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ABSTRACT This research is concerned with the idea of reducing a large
time-dependent problem, such as one obtained from a Finite-Element
discretization, down to a more manageable size while preserving the most
important physical behavior of the solution. This reduction process is
motivated by the concept of a projection operator on a Hilbert Space,
and leads to the Lanczos Algorithm for generation of approximate
eigenvectors of a large symmetric matrix. The proposed reduced
coordinate algorithm is developed, compared to related methods, and
applied to some representative problems in mechanics. Conciusions are
then drawn, and suggestions made for related future research.
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Chapter 1: Introduction Page 1.1

Chapter 1: Introduction

Overview of the Research

Many important problems in computational mechanics cannot be solved on modern
sequential computers. Some of these unsolved cases include models with excessive
memory requirements, ones that require inordinate amounts of computer time, and others
that are simply numerically intractable. Some important problems suffer from more than
one of these flaws. In many cases, technical improvements in computer architecture have
reduced the size of the class of unsolved problems. A good example is the widespread use
of virtual memory machines, which has eased physical memory requirements for many
large problems. Similarly, parallel processing architectures will be used to solve other
problems that require excessive computational cost on a sequential processor. But
increasing the size of computer memory or increasing the number of processing units are
not the only ways to achieve a satisfactory solution to a large, complex problem. Another
useful method is to reduce the size of the problem so that the reduced model is small
enough to solve on an appropriate computer, and yet the important engineering behavior of
the model is preserved in the reduced problem.

Examples of this reduction process are abundant in engineering mechanics: any
continuum problem that is solved via a discretization process involves the reduction from
an infinite-dimensional problem to a finite-dimensional one. Examples of this
simplification process include the Finite Element Method, Finite Difference Methods, and
the use of truncated Fourier series. Many of these reduced problems are still too large to
solve on modern computers, and so an attractive alternative is to find a way to reduce the
size of the problem even further.

The research presented in this document represents an attempt to derive an algorithm for
the solution of many large problems via a reduction in the number of independent solution
coordinates. The mathematical principle underlying this reduction is that of a projection,
and the algorithm is developed from this standpoint. Many of the basic principles of the
proposed algorithm are widely used in engineering mechanics. and in that sense this
research is not entirely new. However, many of ine derivations and applications presented
are quite different from those that have appeared in the literature, and represent an attractive

alternative formulation for many otherwise computationally intrac:able problems.
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. The types of model reduction discussed in this research are very useful in the solution

o of many important engineering problems, but they are not intended to be a unified scheme
to solve any large problem. There are undoubtedly many interesting models in mechanics
that are not solvable using these coordinate reductions, and in these cases, the reduction

) should not be used. In many situations, the analyst will have sufficient physical intuition
' about the problem to be able to judge whether the reduction is warranted. In others, the
f proposed method can be used as a tool for preliminary analysis or design in conjunction
ﬁ:‘ with more expensive unreduced methods.
o Finally, the use of reduced methods does not have to be confined to situations
,y.; involving small computers or slow processors. The techniques developed in this document
: x:jl are appropriate for the solution of extremely large problems that are presently intractable on

even the largest supercomputers. In addition, these coordinate reduction schemes often
produce a mathematical problem that is more well-conditioned than a competitive unreduced
formulation, and are thus more stable or accurate even in cases where the larger problem
can be solved for a similar cost. In short, the research presented herein has the potential to
become a useful and efficient part of the arsenal of numerical schemes that form the basis of
modern computational methods in engineering.

~ Q o . .
- This research is organized into a number of topics that comprise the development and
o application of a proposed reduced coordinate algorithm for the solution of large nonlinear
g . . . :
; H problems in mechanics. It is assumed that the reader has some knowledge of the basic
O o . . .
K- principles of mechanics, operator theory, and numerical analysis.
o This first chapter casts the proposed research into an appropriate computational
-1 . . - .
= erspective, previews the contents of the other chapters, and establishes conventions used
p
o in this document.
oY The second chapter introduces the underlying mathematical theory for the proposed
~
b algorithm. The basic principles of proiections onto a subspace are introduced. and set into
:-j: the tramework of the Projection Theorem, which is of fundamental importance in Applied ‘
N |
g Mathematics. Applications of the Projection Theorem are inroduced. in botn tfinie- ina |
-"’-
'
e
e
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j:' infinite-dimensional settings. Next, the Fredholm Alternative Theorem is presented, along
2 with applications and geometric interpretation. Finally, the development of Krylov
¥ methods for generation of ¢ ie approximate spectrum of a linear operator are presented. In
: particular, the development and application of the Power Method and the Lanczos

Algorithm are presented in this chapter.

The third chapter is devoted to the development of the proposed algorithm for the

.

solution of large time-dependent problems using projection coordinates. The development

PR
A,

is motivated by the cost of solving large approximate problems given by finite-element

.::" discretizations of time-dependent continuum boundary-value problems. In this setting, the
] finite-element approach leads to large systems of coupled ordinary initial-value problems,
e which are generally solved by a temporal integration scheme, such as Newmark's Method.
: This latter algorithm is developed in several different forms. Once the fully discretized
lf initial-boundary-value problem is developed, the proposed algorithm is shown to be a
_ natural way to solve these problems using projection methods. In this section, this reduced
i coordinate algorithm is examined in light of computational considerations, and is compared
J to other established methods in the setting of the theory developed to this point.
,-;-
e The fourth chapter consists of the application of the reduced coordinate algorithm to
v some representative problems in solid mechanics. In each case, the proposed algorithm is
f compared to direct (unreduced) solution schemes on the basis of complexity and
” computational effort.
) ‘4
! Finally, the fifth chapter is devoted to general conclusions and proposed avenues for
23 further study in the field of reduced coordinate models. The list of references for the
" document follows this chapter.
Y
e
: ": Conventions
_ There are a number of important symbolic conventions that will be used in this
) document in order to simplify the requisite notation. Any exceptions wiil be noted
. whenever an inconsistent nomenclature is introduced. For the most part, the following
. conventions will be used:

\"q\. n.".'l '\‘I‘b"',‘\-.[‘
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Do (1) scalars will be denoted by lower-case Greek letters, such as «, Bj+1. The scalar
- components of a vector or matrix will typically be written as subscripted
oW
oy Greek letters.

I-\ ! N

:.:::. (2) vectors will be denoted by lower-case Roman letters, such as qj, v. Columns of

o . . . )

ot matrices are vectors, and will usually be the subscripted lower-case version
i

e of the same letter used for the matrix.

L]

| . (3) matrices will be denoted by upper-case Roman letters, such as A or Qj. Symmetric

N *’l.‘- . . . .

P matrices will generally be represented by symmetric letters like A or T, but
i established conventions may violate this rule. A subscripted matrix like Q;

| \~, may be used to emphasize unusual matrix dimensions.

.\-_‘_: (4) operators will also be represented by upper-case Roman letters, just like matrices. In

o . . . - . .

R the case of finite-dimensional operators, this is a natural convention, since
e these operators can easily be identified with their corresponding matrix. For
¥, infinite-dimensional operators, the context will be adequate to avoid
Lo
L. confusion.

- (5) vector spaces will be denoted by bold upper-case Roman Letters, such as H or ML,

Another use for these characters will be to denote domains of functions,

L] ""‘
{

AR R

WY d_s_ ¥,

~ which are often vector spaces.

Figures, equations, tables, and definitions will all be listed in terms of the chapter

:) number, and then by order within the chapter. All chapters will have their own page
K numbering scheme, with the number to the left of the decimal point indicating the chapter,
:" and the page number occurring after the decimal point.
N

j ‘ Finally, references will be presented, in parentheses, by the last name of the primary
*: author and the reference date, e.g., (Lanczos, 1950). References will be collected at the
: E‘L end of the work, listed in alphabetical order.

A4

‘-’

.

o]
o,

-~
-~
“«.e e

6l

- -

Y

B U N W VL N S A WL N
-l',.’: o _-J' J‘\ ." .'J'_'- o ";-'(‘\.,N" *u,\- . ‘\q‘

LT Py T O ) . T T L I
.w('yf._ \ o ~ 7, ':r-\' \._.‘._.\.-_.‘ ,_.'- .ﬁ ..: s
» . N




\l

.r |
PR

-_“-; ';‘;';‘ vy

by 2,
ra

A

S

hd

SR

2t Y

~

(3
.
Dy

LGRS,

‘|' ¥

Chapter 2

Mathematical

L AN \ S A N A
" .! .!‘.'-'l"u \ .- .- . Y

o
'\-.-

Prelimimnaries

R U N I A S R, .
RN NN RN NERD AT

)




0

e Chapter 2: Mathematical Preliminaries Page 2.

el Chapter 2: Mathematical Preliminaries

o Introduction

P

*- The basic principle underlying this research is that of a projection of some complicated

B problem onto a simpler setting. The precise mathematical formulation of this idea involves

' the concept of a projection operator on a Hilbert space. This topic may seem recondite to
most engineers, but can in fact be understood in terms of the generalization of the

! topological and algebraic properties of ordinary three-dimensional space. The first part of

~ this chapter develops the required theory from exactly this standpoint, and culminates in the

.'_';-_'- Projection Theorem, which is one of the most important results of modern applied

»_‘:: mathematics, and which will be used often in subsequent sections of this research.

o

(¥ Once the concept of a projection operator on an abstract space is defined, the

e mathematics of spectral theory can be developed to explore the idea of which projections

\j, are appropriate for a given problem. The second part of this chapter is devoted to this line

: of reasoning, and results in the Fredholm Alternative Theorem. This theorem classifies

which problems are solvable and also demonstrates the importance of different parts of the
spectrum in the solution of the reduced problem.

The spectrum of an operator can be used to determine appropriate subspaces for
projection solutions of the large problems that arise in Finite-Element modelling, but the
actual construction of these subspaces is an iterative process that must be implemented on
the computer. One of the most useful classes of numerical algorithms for generating these
approximating subspaces can be developed by considering a special subspace called the
Krylov Subspace. Two particular schemes for constructing approximations based on this

Krylov Subspace, namely the Power Method and the Lanczos Algorithm, are derived at the

end of this chapter.
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The Definition of a Hilbert Space

There are several concepts that we associate with vectors in ordinary three-dimensional
Euclidean space, R3. The first of these is the concept of length or norm, which can be

expressed in terms of the distance between a given vector v and the zero vector 0. In R3,

the length of a vector v with components v1, v2, and v3 is given by:

Tvll = (Vi2 + v22+ v32)1I2 = <v,v>12 Eqn 2.1

where <v, v> is the usual inner product for R3, namely <v, v> = vTv. This length in R3 is
thus the square root of the inner product of a vector with itself, and this concept of inner
product is another fundamental topological property that we associate with three-

dimensional space R3. In addition to providing the notion of length, the inner product also

defines the angle between two vectors, via the relation:

<y, v> = Hullll vl cos(Buv) Eqn 2.2

Finally, our physical intuition of space tells us that it has no "holes”, in that any convergent

sequence of vectors in R3 tends to a limit vector that is also contained in R3. In an abstract
setting, this property is termed completeness, and this term agrees with the intuitive
connotation of "complete" as meaning "whole" or “entire".

In summary, we note that R3 is a complete normed inner-product space, and the norm
(length) function is defined in terms of the inner product. These concepts characterize our

physical intuition about R3, and they are easily generalized to n-dimensional Euclidean

space Rn, or to abstract linear vector spaces S of arbitrary dimension. It is exactly these
concepts which underlie the definition of a Hilbert Space:

Definition 2.1: A Hilbert Space is a complete normed linear vector space with the norm
induced by an inner product.

The main concept to remember about a Hilbert space is that it is an attempt to generalize the

topological behavior of familiar three-dimensional space R3 to vector spaces of higher

- N Y N R B RN
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u A dimension. In particular, because a Hilbert space is endowed with an inner product, the
B . concept of the angle between two vectors (recall Eqn 2.2) is preserved. In particular, the
b concept of "perpendicularity” is generalized:
. Definition 2.2: Two vectors u and v in a Hilbert space H are termed orthogonal if their
'y
inner product vanishes (i.e., <u, v> =0)
o
-.::" A subset M of a linear vector space S may be a vector space in its own right. In this case,
,_5:.'; the subset is referred to as a subspace, or a linear manifold (often abbreviated to simply
(. . " . S
; "manifold" when the context of linearity is clear):
b » L . :
j.:j. Definition 2.3: A set M in a linear vector space S is termed a subspace (or a linear
S
“ manifold) if, for all vectors u and v in M, and for all scalars a and B, the vector
._’_' (o + Bv) is also in M. (Some concrete examples of finite-dimensional manifolds
- " . .
N are shown in Figure 2.1)
o
s
»,e A
- 2-Dimensional Manifold
- in 3-Dimensional Space
e
o
Lovs
2 >
-:".“_{ 1-Dimensional Manifold
AN in 2-Dimensional Space
S
"
St . . .
e Figure 2.1: Examples of Linear Manifolds
N
-
oy
e . . . .
Note that a linear manifold necessarily contains the zero vector (choose a =3 = 0), and
o thus "inherits” an identity as a vector space from the parent space S. If the parent space is
T e . .
S complete, and the manifold ‘considered as a vector space) is also complete. then the
- p P p
e manifold is referred to as ¢losed. Two important classes of manifolds are always closed:
= finite-dimensional manifolds. and manifolds that are "perpendicular” to another manifold.
o This latter case is important enough © warrant a definition:




N
‘-':*:
h.:
’ Definition 2.4: If M is a linear manifold in a Hilbert space H, then the set M L (the
-::: linear manifold orthogonal to M) is defined as consisting of all vectors in H that are
}1
" _. orthogonal to every vector in M. This set M - is termed "M-perp", to indicate that
. the whole manifold is perpendicular to M.
.
“r Another term for M L is the orthogonal complement of M. Figure 2.2 illustrates the
‘s
- orthogonal complements M L for the types of manifolds shown in Figure 2.1.
& s
% .
~ 7
7 /'
k L)
‘s "
- >
. 1-Dimensional Complement
98 1-Dimensional Complement in 2-Dimensional Space
0 in 3-Dimensional Space
Figure 2.2: Examples of Orthogonal Complements
2
—_
N
L Closed linear manifolds in a Hilbert space are the setting of the following theorem, which is
‘;::: among the most important in Applied Mathematics (Stakgold, 1979):
A3 Theorem 2.1 - The Projection Theorem. LetM be a closed linear manifold in a
) Hilbert space H. Every vector u in H can be expressed uniquely as the sum
:::: Uu=sv+w
<
- where v is a vector in M and w is a vector in M +. The vector v is termed the
A orthogonal projection (or simply the projection) of u on M, and the vector v can be
«_::: characterized as the unique vector in M that is closest to u. *
.:::
:n"
Q.
" J
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It is important to note the terms "orthogonal” and "closest” in the statement of this theorem.
The setting of the Projection Theorem is a Hilbert Space, whose distinguishing feature is its
inner product function. This inner product induces the concept of angle between vectors in
the space, including the important special case of perpendicularity between vectors. The
concept of "closeness" of the vector v to the vector u is defined in terms of the norm of the
error u - v, and this norm is given by the inner product as well. The "closest” vector v to u
is the one that minimizes the norm of the error u - v. Thus the terms "orthogonal” and
"closest" have precisec meanings in terms of the underlying inner product on the Hilbert
Space H, and an application of the Projection Theorem in practice means that, on some
level, a minimum-norm problem is being solved. This concept will appear again and again
throughout this document. The geometric interpretation of these ideas for three-
dimensional space is shown in Figure 2.3.

Figure 2.3: Interpretation of the Projection Theorem

Given a closed linear manifold M, a Projection Operator P can be defined by the action of P
on any arbitrary vector in H. Ifu =v + wis a vector in H, and the vector v is the
orthogonal projection of u onto M (whose existence and uniqueness is guaranteed by the
Projection Theorem), then the projection operator P can be implicitly defined by its effect
on u, namely Pu =v. This operator merely projects any vector in the space onto the
manifold M, which results in an error w = (I - P)u, where I is the identity operator. This
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last relation also defines the projection operator for ML, namely (I - P). Thus the
decomposition of u into orthogonal components v and w can be written in terms of

) projection operators:

! u=v+w =Pu+ (I-Pu Eqn 2.3
;‘ Note that any projection operator satisfies Pk = P for k > 0, since the projection onto the
: subspace need only be done once. (Such operators are termed jdempotent).

The Projection Theorem has a geometrical interpretation that is important in the application
of approximation theory. The vector u is to be approximated by some vector v in M, and
this introduces an error vector € = u - v. This approximation v and error ¢ implicitly define

w

'." two manifolds, as shown in Figure 2.4:

)

X e

o u

N

N

= M

I}

! N

9
vector vin M vector vin M
vector e in N+ vector e in N+

v

Figure 2.4: Approximation Manifolds

[P PR

(1) The manifold M containing the approximation v. In the problem of the
approximation of functions, this manifold is often spanned by a basis of

interpolating functions, so M is sometimes called the space (subspace) of "basis”

functions.
)
i/
N (2) The manifold that is perpendicular to the error vector e. This manifold will be
' termed N, and will be associated with the projection operator Q. Every choice of an
« . . « .
n independent vector w from N gives an equation <e, w> = 0 that can be interpreted as
.
* a "test” for a vanishing error component. From this interpretation, the manifold N is
often termed a space of "test" functions.
)
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The general problem involves the approximation of u by v, and the criterion for the
selection of this approximation v is the projection relation Q(e) = Q(u - v) =0. This type
of formulation is often encountered in applications (the weak formulations of Lagrangian
Mechanics that lead to the Finite Element Models in Chapter 3 and 4, for example), and
there are many schemes for choosing the manifolds M and N. What is important here is
the realization that the Projection Theorem tells how to choose N in order to minimize the
norm of the error u - v. This minimum-error solution is obtained by takinge =u - v
perpendicular to the manifold M, which is equivalent to choosing N = M. In this case,
the space of basis functions and the space of test functions coincide, and the error is
minimized in the natural norm for the problem. This type of approximation is termed a

Galerkin Approximation, and such approximations are obviously Projection Solutions, in

that they involve the projection of the problem onto an approximating subspace.

Projections Onto a Sut Matrix Case

Letx € Rn,y € Rm, and Q € Rnxm, with m < n. When we write x = Qy, we are saying
that x is a linear combination of the columns of Q, or that x lies in the column space of Q,
which is denoted CS(Q). To see this fact, simply partition the matrix Q into its columns

[q1, q2, ..., qm], the vector y into rows (Y1, ¥2, , ¥m)T, and form the product:

Qy =v1q1 + y2q2 + ... + Ymqm

Thus x = Qy is just a linear combination of Q's columns. This provides a convenient
shorthand for expressing any vector in CS(Q): as the elements of y vary over all real
numbers, the vector x = Qy ranges over all the vectors in CS(Q). We will assume that the
dimension of CS(Q) is m, so that Q's columns are linearly independent, and furthermore,

that we have orthogonalized and normalized Q's columns so that QTQ = I, the identity

matrix of order m. Note that QQT = I, unless m = n, since the rank of the product of two
matrices cannot be larger than the rank of either one, and rank(Q) = dim(CS(Q)) =m

With this convention, we see that CS(Q) forms an m-dimensional linear manifold of Rn,
and that Q's columns form an orthonormal basis for this manifold. In this case, the
Projection Theorem implies that any vector w can be decomposed into a component u that

0.'- h‘l. .l ‘l Iih—'....'.. * I ~-l.“~’l*- ." » - - “{-“‘-('
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lies in CS(Q), and a component v that is in CS(Q)+, the orthogonal complement of the
column space of Q, as in Eqn. 2.3:

w=u+v ue CS(Q), ve CS(Q)L Eqn 2.4

The vector u is given by QQTw, and the vector v by (I - QQT)w. By comparing Equations

2.3 and 2.4, we can see that the nxn matrix QQT is a projector onto CS(Q), and (I - QQT)

is a projector onto CS(Q)+. A geometric picture for the cases n =2 and n = 3 is shown in
Figure 2.5.

Three-dimensional case Two-dimensional case
ig : Exampl fVv r Projections

If A is an nxn symmetric matrix and Q a marrix with m orthonormal columns. then an

approximate solution x of the system Ax =f can be sought in the column space of Q by
solving the problem AQy = f. Unfortunately, this problem has n equations and m
unknowns, and thus is inconsistent, in general. The projection of this problem onto CS(Q)

could be obtained by multiplying by the projector QQT to give the matrix equation

QQTAQy = QQTTf, but this is an mxm problem embedded in n-dimensional space. A better

approach would be to simply multiply the equation AQy = by QT to obtain the desired
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relation QTAQx = QTb, which is an mxm system in m-dimensional space. This is a
Galerkin approximation, since the approximate solution space CS(Q) is the same as the
projection space.

It is appropriate at this point to conjecture on the criteria that would make the CS(Q) a
"good" approximate solution space. At the very least, we would like to satsfy:

(1) QTAQ has to somehow be a "good" approximation to A

(2) QTAQ should have some simple structure (i.e. banded, triangular, etc.)
(3) It should be economical to form Q, or to add vectors to Q to increase the rank

(and hence the accuracy) of the projected matrix QTAQ.

lvabilit ndition

If we are going to solve operator equations like Ax =f via projection methods, then some
consideration must be given to the problem of determining the conditions under which the
operator equation is solvable. These solvability conditions can be phrased in terms of inner
products, and the concept of projection operators can be used to generate approximate
solutions of Ax = f even when the solvability conditions are not satisfied. In the following
development, the operator A will be taken to be self-adjoint, in that <Au, v> = <u, Av>.
Extensions of this theory to the non-self-adjoint problem can be made, but they are not
needed at the present stage of this research, and the nomenclature gets more complicated.

When the operator A is defined over a domain in a Hilbert Space, the set of all vectors in
this domain that satisfy Av = 0 is called the Null Space of the operator A, and is denoted by
NS(A). The set of all vectors y = Ax is called the Range of A. (We will be concerned with
operators whose domain and range are both subsets of the same Hilbert Space H.) If the
operator equation Ax = f is to be solvable, then the vector f must be in the range of A, so
that, at the simplest level, a solvability condition is merely any condition that characterizes
the range of A. If the equation Ax = f is solvable, then the inner product equation
<Ax, v> = <f, v>

is satisfied for any vector v, as long as x is the desired solution. In particular, if v is in
NS(A), then:

<f,v> = <Ax,v> = <x, Av> = <x,0> = 0

1
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since A is self-adjoint, and Av =0 for any v in NS(A). This relation places an important
condidon on the vector f: if the self-adjoint operator equation Ax = f is to have a solution,
then a necessary condition for this solution to exist is that the inner product <f, v> vanish
for any vector v in the null space of A. In the terminology of the last section, if P is the
projection operator onto the null space of A, then Pf = 0 is a necessary condition for a
solution of Ax = f to exist. If this condition is satisfied and NS(A) is not empty, then the
solution of Ax = f will be non-unique. In that case, if x is a solution, then
AX+Vv)=Ax+Av=f+0=f
so that x + v is also a solution for any v in NS(A).

An obvious question arises: what if the equation Ax = f has to be solved, and yet f is not
orthogonal to the null space of A? Can we "set our sights lower" and find some
approximate solution to a related problem? This question can be answered simply here.
Consider the new problem obtained by projecting Ax = f onto the orthogonal complement
of NS(A):

(I-P)Ax=(1-Pf or Bx=g

Here, the operator B = (I - P)A is the projection of A onto this complement space, and the
vector g = (I - P)f is the projection of f onto the same space. Itis easy to see that B and A
have the same null space, so the necessary condition for Bx = g to be solvable is that
<g, v> =0 for any vector in NS(A). Since g is orthogonal to NS(A) by construction, this
condition is trivially satisfied. Thus it appears that the approximate problem Bx = g can be
solved, though in order for the approximation to be accurate, the error Pf =f - g in the
right-hand side must somehow be unimportant.

The Spectrum of an Operator

There is an extremely important type of null space that arises in applications. The operator
A is taken (as usual) to be self-adjoint, and the null space of the operator (A - Al) is sought,
where A is some real number. The set of all numbers A such that the operator equation

(A-Du =0
has non-trivial solutions is called the Pojnt Spectrum of A. (If A is a matrix operator, the
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{7~ point spectrum is often simply called the spectrum of A). Any such number A in the point
o ' spectrum is termed an gigenvalue, and the corresponding nontrivial solution u is called an
; o gigenvector; the pair (A, u) is termed an gigenpair. For a finite-dimensional operator A,

the set of eigenvectors of A forms a basis for the underlying (finite-dimensional) Hilbert
Space, and can be chosen to form an orthogonal set. Henceforth, when we speak of the
j eigenvectors of a self-adjoint operator A we will assume that this orthogonalization has

ol already been performed, and in fact that all the eigenvectors have been normalized to unit
‘ ..- . .
P length. Then the set of eigenvectors of A can be taken as an orthonormal basis for the
e underlying Hilbert Space H.
e It is worthwhile to examine the solution x of the n-dimensional operator equation Ax = f in
:E:}‘: the light of the existence of an orthonormal set of eigenvectors of A. If we denote these
¥ -‘.'
R~ eigenvectors by ui, and the corresponding eigenvalues by i, then both the solution x and
e the data f can be expanded in terms of the ui:
) ~":: n n
:?..: X = Zﬁiui f = Zniui
- i=1 i=1
e
With these expansions, the equation Ax = f can be written in terms of A's eigenvectors:
e n n n
o Ax = A Eui= D Aifiui= Y miu
i=1 i=1 i=1
b
N The identification of each component of the sum gives the coefficients of the solution x:
A
‘T
& & = ni/Ai Eqn 2.5
.r:'.‘
N This is an extremely important result: the coefficients of the solution of Ax = f occur in
W inverse ratio to the eigenvalues of A. This means that, for a general distribution of the
b coefficients of f, the most important eigenvalues in terms of approximating the solution x
o are the ones with the least magnitudes, since they contribute the largest effect on the
y Y . T
components of x. In other words, given a random distribution of vectors f, an
,,::Z approximation to the solution of Ax = f based on the eigenvectors associated with the
L . . . .
minimal eigenvalues (in modulus) would be expected to give more accurate results than one
:l:; based on the eigenvectors associated with the maximal eigenvalues. This bias towards the
N minimal eigenvalues would become more pronounced as the ratio of the moduli of the
.
ey extreme eigenvalues [An/A1l becomes large, where A1 and An are the minimum and
v
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maximum eigenvalues, respectively (in terms of their magnitudes). This ratio [An/A1l
represents the "spread” of the eigenvalues of A, as shown in Figure 2.6:

Imaginary Axis

mm of A => Eigenval n Real Axi

| | { { I[ il Real Axis
AN .

Figure 2.6: Eigenvalues for Positive-Definite Matrix A

If the ratio An/A1l is large, the transformation A induces a wide range of characteristic
"scales" on the data f and the solution x, and this existence of "multiple scales" may cause
numerical problems for finite-precision calculations involving the matrix A. For this
reason, this ratio is also known as the (2-norm) Condition Number of the matrix A, since
whenever this number is large, the matrix is potentially ill-conditioned.

Finally, the maximal eigenvalue Aq defines a norm on the set of nxn symmetric matrices A

that is termed the spectral radius p(A). This norm is the natural extension of the norm
defined on R3 by Equation 2.1, in that it measures the stretch induced by the
transformation A on vectors in Rn, because it is equivalently defined by:

pP(A) = An = max (Il Ax 1/l x 1)

where the maximum is taken over all x in R, and Il x 112 = xTx = <x, x>.

The Fredholm Alterative Theorem

If (x.u isan eigenpair of A, then it 1s easy to see that the null space of (A - AI) is not
empty, since at least it contains u. In this case. the operator equation (A - Al)x = f must

satisfy the solvability condition <t, u> = 0. If & s pof an eigenvalue of A, then the null
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space of (A - Al) is empty by definition, and so there are no solvability conditions that need
to be placed on f. Thus the behavior of the operator equation (A - AI)x = f depends very

strongly on whether the parameter A is an eigenvalue or not. These two alternatives are
contrasted in the following result, which is known as the Fredholm Alternative Theorem.
The statement of the theorem below is similar to that found in (Noble, 1977), and it holds
only for finite-dimensional Hilbert Spaces. A similar result can be stated for so-called
compact operators on an infinite-dimensional Hilbert Space, but the definition of
compactness is beyond the scope of this section. The important interpretations of this
theorem for the purposes of this research hold for all the Hilbert Spaces that underlie this
research (namely the infinite-dimensional solution space for the continuous physical
problem, as well as the finite-dimensional vectors spaces populated by the Finite Element
matrices that will be discussed in Chapters 3 and 4).

Theorem 2.2 - The Fredholm Alternative Theorem. Let (A-AI)x =fbeasetofn

linear equations in n unknowns, where A is a symmetric matrix and A a given
real number. Then exactly one of the following alternatives is true:

(1) A =Ai, where Aj is an eigenvalue of A, in which case a solution x exists if and
only if the condition <f, uj> = 0 holds for every eigenvector ui associated with
the eigenvalue Ai. In this case, infinitely many solutions exist, each of the form
X + auj, where a is an arbitrary real number and uj is any eigenvector associated

with the eigenvalue Ai.

(2) A is not one of the eigenvalues of A, in which case the unique solution x can be
written as :

n
X = z {<ui, £>/(A - Ai))} ui

i=1
where (Ai, ui) are the eigenpairs of A and the uj are taken to be an orthonormal

set.

This relation is important because it sums up the conditions under which the equation Ax=f
has a solution, and also because it shows how the solution depends on the eigensystem of
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A, as well as the data f and the parameter A. It is easy to see that the expansion of x is most
dependent upon the eigenvalues that are closest to the parameter A. In mechanical

applications, this scalar A has the interpretation of a frequency, and the dependence of the
solution on the nearest eigenvalues leads to the familiar phenomenon of resonance.

The Power Method

Probably the most commonly known method for finding a part of the spectrum of a matrix
is the Power Method. Under the right conditions it can be used to find exactly one
eigenpair of a matrix A, namely the eigenvalue of largest modulus and the associated
eigenvector (often termed the dominant eigenpair). A first draft of an algorithm for the
implementation of the Power Method looks like:

Algorithm 2.1: Power Method
Finds: the dominant eigenpair (An, un) of a matrix A

Given: initial vector xo

Repeat for i =1, 2, 3....
Xi = AXi-1

i = lxill/Mxi1ll

until converged

The pair (8i, xi) is an approximation to (An, un)

In practice, the algorithm would contain a normalization step, to keep the length of the
vectors Xij from becoming too large or too small. This step is omitted from the algorithm to

call attention to an important fact: the sequence of vectors {xi, X2, ..., Xj} is identical to

the sequence {Axo, A2Xo, ..., Aixo}. This latter sequence of vectors is called the Krvlov
q q

Sequence associated with the matrix A and the initial vector xo. The subspace spanned by
this sequence of vectors is called the Krvlov_Subspace, which will be shown to play an
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ANl
™
- important role in the Lanczos Algorithm. The Krylov subspace will be denoted by:
- K(A, u, k) = span {Au, A2u, A3y, ..., Aku } Egn 2.6
,:: With this convention, it is clear that the Power Method is just a way to generate a Krylov
sequence, and the convergence of the Power Method is equivalent to the convergence of
e the Krylov sequence to the dominant eigenvector of the matrix A. What should be noted is
- that only the last member of the sequence is used in the Power Method, since all the earlier
‘::' terms are merely a means to the end of finding one eigenpair. A logical question to ask
would be whether several (or all) of the terms of the sequence could be used to find
r' estimates for more than one of A's eigenpairs. In fact, the entire subspace K(A, u, k) can
>~
2 be used to calculate estimates of exactly k eigenpairs of the matrix A. This fact is the basis
b for the Lanczos Algorithm.
<
- The convergence of the Power Method is easy to establish, as long as A has a single
. dominant eigenpair (i.e., Anis a simple eigenvalue), A is non-defective, and xo is not
N orthogonal to the associated dominant eigenvector un. In this case, the vector xo can be
" expressed in terms of the eigenvectors of A as:
= n n D P nP
- =Z§ A"o=_2)1~i§i b A= D* % =My Zl‘ﬁgi; uj
~. = i= =
As p goes to infinity, the ratio (Ai/An)P goes to zero in every case except when i =n, so
'.':j that the Krylov Sequence converges to the dominant eigenvector un.
- The Power Method can be applied with a shift ¢ by replacing the matrix A with the shifted
A matrix (A - ol). In this case, the algorithm converges to the eigenpair that maximizes the
N quantity (i - o), as long as this eigenvalue is simple and the starting vector is not
.:;: orthogonal to the associated eigenvector. In order to find the minimal eigenpair (the one
>~ associated with the eigenvalue of least modulus), the Power Method can be applied in an
:: inverse setting by replacing A with its inverse A-1. This is accomplished in practice by
)
o, replacing the step "xi = Axi-1" in Algorithm 2.1 by the inverse step "solve Axi = xi-1".
D, . . L . . . e .
Ay Finally, the algorithm can be applied in an inverse setting with a shift ¢ by solving the
0%y svstem (A - ol)xi = xi-1 for the iterate xi. In this case, the convergence of the iteration can
&
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be established (under the usual conditions given above) to the eigenpair that minimizes the

quantity (A - o). This eigenpair is the one whose eigenvalue is closest to the shift point o.
This last case is of great utility in applications involving resonance, since the shift point can
then be interpreted as a frequency component of a time-dependent forcing term. In this
case, the eigenpair found by the Power Method is one likely to be excited by resonance
effects (at least in the linear case, where sub- and super-harmonic resonances are not an
issue).

[he [.anczos Algorithm

The Lanczos Algorithm is an iterative method that can be used to find relatively accurate
estimates of some of the extremal eigenvalues of a symmetric matrix A, along with good
estimates of the associated eigenvectors. It is used in this research as a way to find suitable
approximating subspaces (such as the set of converged eigenvectors from the Lanczos
iteration) for the projection solution of problems involving a large symmetric matrix A.

There are many starting points for a derivation of the Lanczos Algorithm. The discussion
of the last section arrived at the Lanczos Algorithm as a generalization of the Power
Method, where the entire Krylov Subspace is used for the approximation manifold.
Alternatively (Golub, 1985), the Lanczos Algorithm can be derived from considerations of
the optimization of the Rayleigh Quotient , which is defined by:

R(A, x) = (xTAx)/(xTx) Eqn 2.7

The Rayleigh Quotient is a real-valued function of a vector (a functional), which satsfies:
min R(A,x) = A1 and maxR(A,x) = An Eqn 2.8

where A1 and An are the minimal and maximal eigenvalues of A , respectively. (As usual,
it is assumed that A is symmetric.) The min and max are taken over all nx] vectors x.
This functional can easily be extended to infinite-dimensional linear self-adjoint operators
by replacing the minimum and maximum with the infimum and supremum, respectively.

If x is taken to lie in CS(Q) (i.e., x =Qy) instead of Rn, then the equalities will generally

not be obtained:
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min R(A, Qy) 2 A1 and max R(A, Qy) € i

An alternative way to express these terms is to note that:

R(A, Qy) = (Qy)TAQy/(Qy)TQy = yTQTAQy/yTy = R(QTAQ,y)

where y is an mx1 vector. The Rayleigh Quotient for the vector x = Qy is merely the

Rayleigh Quotient for the reduced matix QTAQ. Henceforth, when discussing the
minimum or maximum of R(A, x), the dependence on the vector x will be suppressed, so
that R(A, x) will be written as R(A).

A natural way to measure the accuracy of QTAQ as an approximation to A is to try to
optimize the Rayleigh Quotient, in the sense that Q is to be chosen to give the least
minimum and the largest maximum. Alternatively, we could consider the situation when

the nxm matrix Qm is known, and it is desired to append a vector qm+1 to it to obtain a new

matrix Qm+1 that gives a better projection approximation to A, in the sense that:
min R(Qm+1TAQm+1) < min R(QmTAQm) Eqn 29.a
and max R(Qm+1TAQm+1) > max R(QmTAQm) Eqn 29.b

Since R(A, x) is a scalar-valued function of a vector x, a logical way to achieve this type of
progress is to take a "steepest-descent” approach, by choosing the new vector qm+1 to have
a component in the direction of the gradient of R(A, x):

Grad(R(A,x)) = d((xTAx)/(xTx))/dx =2[Ax - R(A, x)x]/(xTx)

Since 2[Ax - R(A, x)x]/(xTx) is in the span of {x, Ax}, we can satisfy Equations 4.3 by
requiring that qm+1 contain components in the directions of Aq1. Aq2, .... Agm. This

observation leads to the following iteration scheme for the generation of an approximation

QmTAQm to the matrix A:
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N
o Given an initial vector qo and a symmetric matrix A:
l.. .
) Let q1 = Aqo
-_;' Find q2 in span {q1, Aq1}
~ Find q3 in span {q1, Aq1, q2, Aq2} =span {q1, Aql, Aq2} = span {q1, Aq1, A2q1}
::: ...........
S e
; \ Find gm in span {q1, Aq1, A2q1, ..., Am-1q1} = K(A, qo, m)
: The optimization of the Rayleigh Quotient leads to the choice of the Krylov Subspace as the
b approximating subspace for a projection solution involving the matrix A. If the columns of
[-.
: Q form an orthonormal basis for the Krylov Subspace, then the matrix QTAQ is an optimal
(in the sense of the Rayleigh Quotient) approximation to A. Thus, we are led to the task of
> finding an orthonormal basis for the Krylov Subspace.
g
- In theory, the standard way to turn a sequence of linearly independent vectors such as
e q1, Aq1, A2qi, .... Am-1q] into an orthonormal set is to apply the Gram-Schmidt
: N Orthogonalization procedure. In practice, this procedure is numerically unstable, and the
::3 variations on this scheme (such as "Modified Gram-Schmidt", which reorganizes the
\
v computations somewhat to diminsh the effect of cancellation of significant digits) that will
produce a set of orthogonal vectors are too expensive to implement for large m. (Recall
: " that we expect m « n, but since n can easily be on the order of hundreds of thousands, m
) ': can still become "very large".) Some other way of producing orthonormal bases for the
N Krylov Subspace must be found. Luckily, for a symmetric matrix A, the vectors in the
-j Krylov sequence Au, A2u, ..., Anu satisfy a three-term recurrence (see Mish, 1987,
_’.: Chapter 4, for details). This means that QTAQ, the projection of A onto the Krylov
_, Subspace, is a tridiagonal matrix T, so that QTAQ = T or, equivalently, AQ = QT.
¢ To make this last relation more concrete, define the matrix T = tridiag (Bi, ai, Bi+1), and
N write the three term recurrence by columns, so that:
L
v
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q
N
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o
1 - 7
W Ay — 0
e B2 a2 B3 0 |
o
':.\'.- AQ = QT or A [ql’ q21 ey qn] = [qla q2, ooy Qn] O B3 a3 B4 ..... |
W |0 e Bn |
U ™)
:‘ | 0 ﬁn On
“zj
3,‘, This recurrence can be used as an iteration scheme for constructing the desired orthonormal
basis for the Krylov Subspace. If (for purposes of simplifying the three-term recurrence)
M
upe qo is defined as the zero vector, and 1 = 1, then this matrix equality can be written
O
o, columnwise as:
! \',
i» Aqj =Bigj-1 +0jqj + Bj+1qj+1 G=1,2,..,0-1) Eqn 2.10
:Zf, : This relation can be solved for Bj+1gj+1 to get the intermediate result:
T Bi+1gj+1 = Aqj - Bjgj-1 - jgj G=1,2,..,01) Eqn 2.11
w"i Equations 2.10 and 2.11 are important because they can be used to determine the terms g;
it and Bj that define the tridiagonal matrix T, and thus can be used to derive an iteration
~' scheme for generation of new vectors gj+1 from the three-term recurrence. If Equation
5‘ 2.10 is multiplied on the left by q;T, Equation 2.11 multiplied on the left by qj+1T, and the
ol fact that the gj are orthonormal is taken into account, the remaining terms give these desired
..N"
e definitions:
\ '_ aj = gjTAgj . Eqn 2.12.a
_;-:-:::f Bj+1 = qj+1TAq; Eqn 2.12.b
oz Finally, since the gj are orthogonal, Equation 2.12.a could be rewritten equivalently as:
o = qTAq =qiT(Aqj - Bjgj-1) Eqn 2.13
-
, These relations suggest the following skeletal outline for an algorithm to compute the
L
vector ¢j+1 from the sequence of vectors q1, q2, ..... gj:
v
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Rl
- Given q1, q2, ...., qj (and thus i and Bi fori =1 to j, using Eqns 2.12 & 2.13)
g Let  1j+1=Aqj - o4qj + Biai-1
% Bj+1 = N1
! qj+1 = 1j+1/Bj+1
3 o+l = qj+1TAQj+1 = q+1T(Agj+1 - Bjr1qj)
L!
™ If Bj+1 =0 at some step of the algorithm, then the iteration must halt or divide by zero. In
. this case, the tridiagonal matrix is said to be reduced. The interpretation here is that the
k)
: tridiagonal matrix is locally diagonal, and thus can be decomposed ("reduced") into
i smaller, independent tridiagonal matrices (one jxj and the other (n-j)x(n-j)). Although this
e may seem like an unwelcome event, the following discussion demonstrates that it is
~
» actually very good news.
k-
Recall that the jth column of AQ = QT was given by Aqj = Bjgj-1 + ajqj + Bj+1qj+1. If
- we let Qj =[q1, q2, ..., qj], and write Tj in terms of i and f;, then
AQj = QTj + [0,0, ..., 0, Bj+1qj+1] = QjTj + E;j Eqn. 4.10
N where Ej is an nxj matrix whose first j-1 columns are all zero. This type of decomposition
N of AQj is the subject of the following theorem, whose proof (under more general
- hypotheses) is given in (Golub, 1985).
]
Ly Theorem 2.3 Let A be an nxn symmetric matrix, Tj be a jxj symmetric tridiagonal
:' matrix, Qj be an nxj matrix with orthonormal columns, and Ej an nxj matrix that is
defined by AQj - QjTj = Ej. Then the spectrum of T approximates that of A, in
S the sense that there exist j eigenvalues of A (A1, A2, A3, ..., Aj) that satisfy:
o (i - T | SQ)I2UE]jl
® where ti (i=1, 2, ..., j) are the eigenvalues of T}, and Il - 112 is the spectral norm.
)
b,
L)
K
"
4
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In the setting of the Lanczos Algorithm, the matrix Ej has a spectral norm given by:
NEjll = (p(ETE;HIZ = Bj+1

This means that the vanishing of the off-diagonal term Pj+1 is equivalent to the calculation
of j gxact estimates for eigenvalues of A. This "fault” of the algorithm in fact signals its
convergence. In practice, none of the off-diagonal terms is ever exactly zero, so the
eigenvalues of A are not calculated exactly, but if Bj+1 ever becomes sufficiently small, the

effort to recognize this case and take corrective action is rewarded by a number of nearly
exact estimates of A's extremal eigenvalues.

lgorithm 2.2; Fi n rith
Finds: Estimates of extremal eigenpairs of a symmetric matrix A

Given:; Initial nonzero vector r]

(1) Let Bj =!Ir1 |l and define qo=0
@) For j=1,2,3, .., n-1

qj = 1i/Bj

uj = Agj

rj+1 = uj - Bjgj-1

o = qjTrj+1

Let 1j+1 = rj+1 - Qjqj
Bj+1 = lrjsr Ml

If (Bj+1 = 0) then STQP : the eigenvalues of Tj are exact
estimates of j eigenvalues of A.

If Bj+1 = O, so that the algorithm terminates, and it is discovered that more than j

eigenvalue estimates are needed, the algorithm can be restarted by choosing a new random

initial vector r1 that is orthogonal to the columns of Qj. (In practice, exact equality of
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Q.‘l
o
W floating point numbers is seldom obtained, so the actual test might be | Bj+1| < €, where
o € is some small error tolerance.)
b
Lo
l:: A serious difficulty plagues Algorithm 2.2, namely the loss of orthogonality among the q;.
.' Moadification of the Lanczos Algorithm to repair this defect requires an analysis of the effect
;.:f. of round-off error on the calculations. This analysis starts with the consideration of the
o convergence of the algorithm in the absence of round-off. In the following paragraphs, the
o
- nxj matrices Qj and Ej, as well as the jxj matrix Tj, will have the subscript j suppressed, in
_ order to avoid confusion.
R
b Recall the relation AQ = QT +E, where E = [0, 0, ...., 0, Bj+1gj+1] has j columns. Let
u,)’
t : the eigenpairs of the jxj tridiagonal matrix T be denoted by (8i, pi). Each of these
'.:j:_' eigenpairs (6i, pi) of T defines an approximate eigenpair (8, vi) of the matrix A, where vi
.‘.‘_
f:'; is given by vi = Qpi. The obvious measure of accuracy of the approximation (6i, vi) is

the error Il Av; - 8ivi ll (in the 2-norm), but we would prefer to calculate this error without
the expense of multiplying by A. In this vein, we note that:

p g ™ . : ‘
_TI. -l"." "' -" -.' -" » \' "t l‘xl "l{L}L?

: I Avi -68ivill = It AQpi - 6iQpi I! (since vi = Qpi)
L = I1(AQ -QT)pi I (since 8ipi = Tpi)
= [l Epi Il (since AQ-QT =E)

If P=[p1,p2, ..., pj] isthe matrix of T's eigenvectors, and the ith column of this matrix

PR

is given by the scalars (®1i, ®2j, ..., ®ji)T, then the error It Avi - 6jvi Il can be written as:

s

It Avi - 8jvill = IlEpi Il = Il Bj+1mjiqj+1 | = | Bj+1mi |

DO

v
»

v

since all the q;i are of unit length. This last relation gives the desired simple form for the

I

error Il Avi - 6jvi |l : itis just the bottom element of the ith eigenvector of the tridiagonal

DA

matrix T, multiplied by the term Bj+1. Note that when Bj+1 = 0, the error vanishes, in

e agreement with the results of Theorem 2.3.
‘4
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Rrmss
e In order to use this last result, it is necessary to diagonalize T at each step of the iteration so
o that the bottom elements of the eigenvectors can be found. This will turn out to be a good
N idea anyway (from the standpoint of reducing round-off error), but calculating all the
AN , eigenvectors of a tridiagonal matrix at every step just to avoid matrix products (for the
::_’-j: evaulation of the accuracy of A's eigenpairs) seems like an enormous expense. In fact, the
iy matrix T is only of order j, and j is typically much less than n. In these circumstances,
finding the j eigenvectors of T is many times cheaper than performing multiplications by
- the nxn matrix A.
e
VB
\b\
In practice, after many steps of Algorithm 2.2, it is common to find that, not only are the
NON vectors gi not orthogonal (i.e, QjTQj # Ij), but that the rank of Qj is less than j. The
:1:::: vectors qi are supposed to form an orthonormal set, but in practice may turn out to be
N linearly dependent. Clearly, something is wrong with the algorithm, and this is the reason
ik that the Lanczos Method was abandoned in the 1950's. In order to understand the reasons
ij'r_I;'. for this breakdown of the calculations, the effect of round-off error on the algorithm must
4 :::;:I be studied. The following discussion is based on that found in (Parlett, 1980b), where the
L details can be found.
A
:j:';; If vi is an approximate eigenvector of A with associated eigenvalue 6j, then the analysis of
l:j_:-' the last section implies that the accuracy of this eigenpair can be measured in terms of the
.J error norm Il Avi - 6ivi ll = Il Bjy1mji I, where mji is the bottom element of the ith
s
.~
- eigenvector of Tj = QiTAQj. Since vi = Qjpi, vi is in the span of {q1, Q2, ..., Gj}, SO Vi
X .
o should be orthogonal to the next iterate gj+1, because the qk are supposed to form an
o,
- orthonormal set. In practice, however, the inner product gj+1Tvi may not be zero. In fact,
N
n\ n.
o if Y is the unit round-off, then this inner product actually satisfies:
e |qjs1Tvil € LI AW Bjamiil = w il AL Avi - 8ivi | i=1,2 ..,]j
‘s."?
~t7
S If (8i, vi) has converged to an eigenpair of A, it is possible for the term Il Avi - 8ijvi Il to be
P arbitrarily small, and thus gj+1 can have an arbitrarily large component in the direction of
.f-'{ . . . . . . -
i any converged eigenvectors of A (see Figure 2.7 for a geometric interpretation). This is
-::.-: the mechanism by which independence of the iteration vectors qj is lost. This defect must
I
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be remedied in any practical Lanczos procedure. Two schemes immediately leap to mind:

(1) Orthogonalize qj+1 against all the other vectors q1, q2, ..., gj, and renormalize.

In Figure 2.7, this amounts to orthogonalizing gj+1 against gj and gj-1.

(2) Orthogonalize gj+1 against all the converged eigenvector estimates vi = Qypi.

These estimates can be identified in terms of the error I Av; - 8ivi Il = Il Bjs im;: Il

In Figure 2.7, this amounts to orthogonalizing qj+1 against v.

9 (in absence of round-off)

Qj41 (in presence of round-off)

Figure 2.7: Int tation of Loss of Orthogonality in Lanczos Algorithm

Scheme (1) is termed Lanczos with Complete Reorthogonalization. This remedy was
mentioned by Lanczos himself in his original paper (Lanczos, 1950), but it is extremely
expensive, and does not directly treat the cause of the problem, namely the converged
eigenvectors. Scheme (2) is called Lanczos with Selective Reorthogonalization, and it is
expected to be no more expensive than (1), since there cannot be more converged

eigenvector estimates than there are vectors gj. In fact, the expense of finding the bottom

elements of T's eigenvectors will increase the cost of scheme (2), but for j « n, this cost
will be insignificant.

The important idea to keep in mind is that the price that must be paid for the control of

round-off error in the Lanczos Algorithm is the calculation of the error Il Avi - 6ivill at
each step of the iteration. The bad news is that the eigensystem of the jxj tridiagonal matrix
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-
0N
-2 . . C .
- Tj must be found at each step; the good news is that this computation is inexpensive
WK . . . .
- . compared to dealing with A, and that this work amounts to checking for convergence of the
N eigenvector estimates. Such a check for convergence of a desired quantity is a good idea in
_‘{-_“ any iterative scheme. These results allow the following algorithm, which is a robust
1 :5_‘}: implementation of the Lanczos Algorithm.
il
A}
Algorithm 2.3: Lanczos Algorithm with Selective Orthogonalization
o . . . . . .
~e Finds: Estimates of extremal eigenpairs of a symmetric matrix A
N
o Given: Initial nonzero vector ri, error tolerance €
o (1) Let Bj =lir1 |l and define qo=0
Z{-‘.;Z- (2)For j=1,2,3,...,n-1
v = 1/Bj
oo uj = Agj
I..-.
.,.".: . . e
-~ T+l = uj - Bjgj-1
e o = qiTrjs1
y
.r_‘_.:
e Let r'je1 = fje1 - 04qj
P
-‘.
) Let B*j+1 = lr*j1 i
1‘*-‘

» ~4' .‘
RS
> l. , l' '.

Compute the eigensystem (0i,pi) of Tj = tridiag(Bi, ai, Bi+1)

'l-.l xl {
S

(A

For i=1,2,..,]j

.'."”

. .1

| B*j+1mji | <€ then orthogonalize r*j+1 against Qjpi

..
a 1
.
AN

.

[SEN

5 Let 1js1 = r'j+1
%
Let Bj+1 = llrj+1 I

WO

- If Bj+1 = O orif sufficient eigenpairs have converged then STOP
R
o As before, if Bj+1 = 0, the algorithm can be restarted with an initial vector (typically, a
-'—' . .
N random vector) that is orthogonal to all the qi,i=1,2, ..., j
9]
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There are several nice features of this algorithm:

(1) If A has a multiple eigenvalue, then the selective orthogonalization scheme will
(eventually) generate an orthonormal set of eigenvectors associated with this
eigenvalue. Although the multiplicity itself cannot be guaranteed (there is always
the chance that not all the eigenvectors have been found yet), there are schemes
(called Block Lanczos) that can determine this multiplicity. The handling of
multiple eigenvalues in a robust manner is not a characteristic of very many
eigenvalue solvers -- the ability to handle this case is an advantage of the Lanczos
scheme.

(2) The algorithm cannot generate an unreduced tridiagonal matrix. Testing for the

vanishing of the term Bj+1 = O prevents an unreduced matrix from appearing.

When the QR or QL algorithm is used to diagonalize Tj, this is a very useful
feature, since these algorithms only work on unreduced matrices.

(3) The algorithm involves A only in the sense of a matrix product. This means that A
need not be stored in explicit form, or even that A exist as an nxn matrix! This last
case would include the use of "Inverse Lanczos", in the sense that the Lanczos

Algorithm can be applied to A-1, by replacing all the matrix multiplications y = Ax
by solutions of the equation Ay = x. This case can also include the use of a shift,

where the solution is of the equation (A - o)y = x. Although it might seem
appropriate to apply the shift in a direct (i.e. non-inverse) setting, by using the

matrix multiplication y = (A - ol)x, it turns out that the Krylov Subspace is

invariant with respect to such a shift, in that K(A, u, j) = K(A - oI, u, j). Thus,
unlike its cousin the Power Method, no advantage is to be gained by shifting the
Lanczos Algorithm, except when the iteration is performed in an inverse setting

(since (A - o)1 # A-1 - gI).

(4) The Algorithm can be easily generalized (Parlett, 1980b) to handle the solution of the

matrix pencil problem (A - AM)u =0, where M is a positive-definite matrix. While
there are other ways to approach this generalized problem (especially those

-«
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involving the Cholesky factorization of M), the Lanczos Algorithm can be extended
in a very natural way that retains the other advantages mentioned here.

This type of approach can also be used on the problem of solving linear sets of equations,
instead of the solution of the matrix eigenproblem. Depending upon the arrangement of the
calculations, either a Lanczos solution procedure or the well-known Conjugate Gradient
Method (CGM) is obtained. This topic will be developed further in the next chapter of this
document.

Finally, it is worthwhile to reconsider the desired qualities for a "good" approximate
solution space CS(Q) that were postulated earlier:

(1) QTAQ has to somehow be a “good" approximation to A

(2) QTAQ should have some simple structure (i.e. banded, triangular, etc.)
(3) It should be economical to form Q, or to add vectors to Q to increase the rank

(and hence the accuracy) of the projected matrix QTAQ.

We have seen that the Krylov Subspace is capable of satisfying all three of these criteria:

(1) QTAQ is the "best" approximation to A in the sense of the steepest descent
optimization of the Rayleigh Quotient,

(2) QTAQ is tridiagonal, which is the simplest form a symmetric matrix can possess
(except, of course, for a diagonal form, but the diagonalization of an arbitrary
symmetric matrix in a finite number of steps violates basic principles of algebra)

(3) The tridiagonal structure of QTAQ makes it easy to append new vectors to the
solution space using a three-term recurrence.

Krvlov
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Chapter 3: Development of the Proposed Algorithm

Introduction

The main purpose of the proposed algorithm is to try to reduce the expense of performing a
finite element analysis of a large mechanical system. Therefore, much of this chapter is
concerned with examining the properties of systems of algebraic equations resulting from
Finite Element discretizations. The rest of the chapter is motivated by the desire to
construct a reduced coordinate algorithm that will retain the fundamental properties of the
larger system, and to place this algorithm in perspective relative to other related methods.

The Finite Element Method is widely used for the generation of approximate solutions of
problems in Engineering Mechanics. Generally, a continuum problem involving an infinite-
dimensional solution space is reduced to a finite-dimensional matrix problem via a Finite
Element discretization. The power of the Finite Element Method lies in its ability to model
most of the important properties of the underlying physical problem without introducing
severe numerical or implementational difficulties. For instance, if there are material
discontinuities or singular applied loads in the physical problem, they can be incorporated
without difficulty into the Finite Element model. In a Finite-Difference scheme, this sort of
"non-regular” data must generally be simplified, smoothed, or ignored. If the underlying
physical problem is governed by a self-adjoint differential relation, the resulting Finite
Element equations are typically symmetric (the matrix equivalent of self-adjointness). This
sort of preservation of symmetry is not typical of Finite-Difference approximations for the
same problem. Finally, when the underlying differential operator is coercive (all of its
eigenvalues are positive), the resulting set of Finite Element equations generally involves
positive-definite matrices (all of whose eigenvalues are positive). Thus the Finite Element
discretization preserves most of the most important physical and mathematical properties of
the original physical problem.

Unfortunately, there are a few undesirable characteristics of large physical systems that are
preserved in the Finite Element model. The first of these is the sheer size of the problem.
Many important physical problems yield Finite Element equation sets that are simply too
large to deal with effectively on the computer. A good example of this case is any large

three-dimensional problem. Another problem is that the spectrum of the continuum
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differential problem contains a wide range of frequencies (these frequencies are often
unbounded above). The Finite Element model typically preserves this property in that the
frequencies of the discretized problem span many orders of magnitude, so that the matrix
problem to be solved may be ill-conditioned. In both of these cases, there is a need for
some sort of reduction scheme to take large Finite Element models and simplify them so
that:

(1) the important engineering behavior of the solution can be found more inexpensively
(2) the resulting reduced set of equations will be better conditioned, and hence more
amenable to a numerical solution.

The development of this chapter is oriented towards the construction of an algorithm to
satisfy these two needs, while still retaining the simplicity of implementation that
characterizes most Finite Element models. The chapter begins with a general discussion of
the Finite Element Method, oriented towards the characteristics of typical Finite Element
equations for time-dependent problems. The particular models discussed are dynamic
problems, but the methods involved in the construction of the algorithm can be easily used
to solve equations whose time-dependence involves diffusive behavior (or even for steady-
state problems).

Once the Finite Element discretization has been performed on the spatial terms of a time-
dependent problem, the resulting system of temporal differential equations must be solved
numerically. This solution process is discussed in the context of one of the most widely-
used numerical intergration schemes for dynamic problems, the algorithm known as
Newmark's Method. The behavior of the Newmark scheme, as well as the basic principles
of time-stepping methods in general, are developed in the next section of this chapter.

The proposed reduced-coordinate algorithm is then developed from the standpoint of a
combination of the Lanczos Algorithm and Newmark's Method. Individual components of
this proposed algorithm are discussed and suggestions for implementation made. Although
the algorithm is cast in terms of Lanczos Vectors and Newmark's Method, the discussion
of the proposed algorithm is general enough to permit other projection bases and temporal
integration schemes (some of which are mentioned in the last chapter, in connection with
suggestions for future research).

Finally, the proposed algorithm is compared and contrasted with other related works from
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the recent literature of Computational Mechanics. Since the topic of Projection Methods has
arich and diverse history, only some of the most recent (and most closely related) methods
are reviewed in this section.

Note that in this chapter, time is represented by the letter "t", which is traditional for
problems of this form. This convention violates those laid out at the end of Chapter 1,
since time is a scalar quantity, and scalars are normally written as lower-case Greek letters.

Finite Elemen ion

The Finite Element Method is a computational scheme that is commonly used for the
numerical solution of the boundary-value problems of mathematical physics. In simplest
terms, it is a computationally efficient procedure to interpolate the approximate solution to a
physical problem. It is one of the most widely used modelling techniques in engineering,
and there are many problems where it is the only rational model that can be used for the
generation of numeric solutions. At the heart of the method are two very important
concepts:

(1) the construction of a manifold of approximate solutions using locally nonzero
interpolation functions.

(2) the application of a Galerkin projection scheme to solve for the optimal member
of the solution manifold.

The standard approach to generate a Finite Element Model is to divide the physical body
into subregions (¢lements), incorporating interpolation nodes along element boundaries and
within element interiors. Interpolation functions corresponding to each nodal unknown
(typically, these unknowns are the nodal displacement components, grouped in:o a vector)
are constructed so that a given interpolation function is equal to unity at its associated node,
and equal to zero at every other node. The interpolation functions have parrow support. in
that they are nonzero only over elements containing, or contiguous to, the associated node.
This narrow support property means that the product of two basis functions is nonzero only
when they are both associated with the same element. Therefore, the inner product of two

basis functions is "usually” zero, and can be nonzero only when both basis functions are

associated with the same element (this condition is referred to as "near-orthogonality ™.
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These interpolation functions form the basis of the approximate solution manifold, and thus
serve to define an interpolant for the approximate solution that is globally defined, but
depends only on the values of the solution at the nodes (which are of course finite in
number).

The Galerkin projection scheme is motivated by the underlying weak physical formulation
of the differential problem, e.g., the principle of virtual work. Typically, this weak
formulation involves an integral over the physical body, which defines an appropriate inner
product function for a Hilbert Space of physical solutions. Seeking the approximate
solution in the finite-dimensional manifold amounts to projecting the problem onto the
Finite Element basis, which yields a set of algebraic equations in the nodal unknowns. For
instance, the integral equations that govern the problem of the dynamic behavior of a
deformable continuum give rise to the set of algebraic equations shown in Eqn 3.1:

dT{Mi+Ku-f} =0 Eqn 3.1

where u is the vector of nodal displacement components,
ii is the vector of nodai acceleration components (often denoted by "a")
f is the vector of applied nodal forces due to external loads
K is the "stiffness" matrix that relates nodal displacement to elastic forces
M is the "mass" matrix that relates nodal accelerations to inertial forces
d is an arbitrary vector of virtual displacements (i.e. a "test” function)

Since we are considering Galerkin schemes, the "test" functions must also lie in the
approximate solution manifold, so d has the interpretation of an arbitrary nodal
displacement vector. In general, Eqn 3.1 could also include a term Cv, where v is a vector
of nodal velocities and C a "damping" matrix. For completeness, this term will be
considered in the temporal integration schemes of the next section, but because the product
Cv is typically small compared to the other terms in the Eqn 3.1, it will not be included in
the following analysis.

For a three-dimensional problem, each nodal displacement consists of three independent
displacement components, so if there are N nodes, there will be a total of n = 3N algebraic
equations. Since every component of the virtual displacement d is arbitrary, this results in

a total of n equations in the n nodal displacement unknowns:




-
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. : Mi + Ku =f Eqn 3.2

) J':

g It should be noted that K and M will be sparse, because of the near-orthogonality of the
:::j basis functions and their derivatives. For any reasonable ordering of the nodes, K and M

turn out to be banded, which leads to great savings in computational effort compared to a
Ko basis that has global support. In addition, the matrices K and M tumn out to be symmetric
= and positive-definite, corresponding to the self-adjoint and positive character of the

e underlying integral operators. These properties of the matrices are useful both
computationally and theoretically. They make the equation set relatively well-conditioned,
e guarantee that the point spectrum of both K and M is real, and express the fact that the
"'_i underlying nature of the continuous integral problem has been inherited by the finite-
[\
" ; dimensional discretized form. (In general, none of these characteristics are found in a
e ' matrix problem arising from a finite-difference approximation.)
i f‘?_‘ There are two ways to approach the solution of a matrix ordinary differential equation such
‘Tud
as Eqn 3.2. The first is to realize that if the mass matrix M is positive definite, then it can
\ be used to define a weighted inner product, which leads to the study of the matrix pencil
AR (K,M). The analytic solution of Eqn 3.2 is then phrased in terms of the (generalized)
- ‘_ eigenvalues and eigenvectors of this pencil, and the Lanczos Algorithm is brought into the
'_-ﬁ picture in the generalized sense metioned at the end of Chapter 2. The other approach is to
98 reduce Eqn 3.2 into a matrix problem whose natural inner product is the "usual" n-
dimensional space Rn. This approach is a little easier to deal with, since the development
. of the Lanczos Algorithm in the last chapter was presented in this setting, so the following
derivations follow from this standpoint.
! ?, If the mass matrix M is positive-definite, then it can be decomposed via the Cholesky
, ::_4 Factorization into the product of a lower triangular matrix L and its transpose:
L ) .‘
NN M =LLT
.» In this case, Eqn 3.2 can be multiplied on the left by L-1 to obtain the equivalent relation:
e
e y+Ay=b Eqn3.3
:
=
o
"
L4
N
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where § = (32/dt2)y
y = LTu
A =L-IKL-T
b = L-If (note that b is a function of time)

Since L is nonsingular whenever M is, the transformations implicit in Eqn 3.3 are
invertible, so the coordinates y are derived from the displacement coordinates u by a simple
(though nonorthogonal) change of basis. If M is not positive definite, but K is, then the
roles of these two matrices can be reversed. If neither M nor K is positive definite, then
there is no general theory for the material presented below, since the matrix ODE of Eqn
3.2 cannot be guaranteed to be diagonalizable.

The solution of Eqn 3.3 proceeds by noting that, since A is symmetric (because K is
symmetric), the matrix A can be reduced to diagonal form by an orthogonal change of
basis:

PTAP = D = diag(wi2)

where the columns of P are the eigenvectors of A (taken to form an orthonormal set), and

the diagonal matrix D consists of A's eigenvalues wi2 (since A is assumed to be positive

definite, these eigenvalues are written as squared quantities). The quantities w; have the
physical interpretation of the patural frequencies of the modes of vibration represented by

the eigenvectors of A, or more precisely, by the columns of Z = L-TP (since there is a
change of basis involved to obtain Eqn 3.3). Note that the matrix Z is an orthogonal matrix
in the inner product weighted by the mass M, since:

ZT™Z = (PTL-)) M(L-TP) = PT(L-1LLTL-T)P = PTP = |

It is important to realize that there are two Hilbert spaces imposed on this problem. The
first is the Hilbert Space Rn, with the inner product <u,v> = uTv, and the second is the

Hilbert Space characterized by the mass-weighted inner product <u,v>Mm = uTMv. Recall

that the notions of length, orthogonality, convergence, and accuracy are all phrased in terms
of the associated inner product, so the "schizophrenia” of these two topological settings
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I:; should be kept in mind at all tmes. What is also important (and comforting) to remember is
4
i that the time scales of the problem are dictated by the frequencies wj, which are the same for
L both problems.
Y.
.{“: Although the computational schemes presented in this work do not attempt to diagonalize
. exactly the matrix problem defined by Eqn 3.2, it is instructive to consider the behavior of
f.::i this diagonal problem for the linear case, since it leads to some insights that should be
E* considered in the proposed algorithm and its relatives. Therefore, an overview of the
theory for the analytic solution in this case will be presented in the following paragraphs.
&
: "’ The change of basis induced by the matrix P on the problem of Eqn 3.3 diagonalizes the
; matrix system of ODE into a set of scalar ODE:
L
-2, J2yi/or2 + Wi yi = O(t) i Eqn 3.4
oA where i is the contribution of the ith eigenvector to the solution (if z = (y1, y2, ..., yn)T,
f\ then the vector y is given by y = Pz), and the term ¢(t) @i is equal to piTb, where p; is the

R

ith column of P. The time-dependence of this modal loading term is included in the first
factor for emphasis that the load b can be a function of time. The solution to Eqn 3.4 will

(&

A j be a sum of a homogenous solution (trigonometric functions with frequency wi), and a
.::; particular solution that depends upon the right-hand side. In particular:
v
N (1) If pi has a large component in the direction of the spatial distribution of b, then the
o
‘I:_': ith mode is said to participate in the solution, and this mode may have the potential
' to contribute significantly to the solution of Eqn 3.2.
o
o (2) If &(t) contains a large frequency component that is close to i, then the ith mode
-— may also be expected to contribute significantly to the solution of Eqn 3.2, through
. the phenomenon of resonance.
_ In either case, the overall behavior of the solution of Eqn 3.2 may be largely influenced by
; a particular modal contribution due to a spatial or temporal matching of the loading terms to
.':;:Z
i
4
P
2
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the natural vibrational modes of the structure. Any reduced coordinate model that will be
expected to capture the important mechanical behavior of the larger problem must
incorporate some means of including these effects.

It should be mentioned that the lower frequencies of the discretized problem given by Eqn
3.2 tend to be much more accurate estimates of the actual frequencies of the underlying
continuous problem than the higher ones. As an example, many continuous problems have
a point spectrum that is unbounded, yet there is no way that a finite-dimensional operator
can exhibit this sort of behavior. It will be seen in the next section that these higher
frequencies can cause serious difficulties for the unreduced problem. This is not such a
surprising result, since the spread of these time scales is obviously related to the condition
of the problem.

Finally, we note that the diagonalization used to examine the matrix problem is not strictly
applicable in a nonlinear setting, since then the matrices, the associated frequencies, and the
modes defined by the columns of P (or Z) all evolve with time. (In fact, it may be
somewhat of a misnomer to refer to the eigenvalues in terms of frequencies, since the
interpretation of a frequency as representative of a characteristic period for a mode to return
to its initial state may not be appropriate in a nonlinear problem). Nonetheless, the
qualitative ideas presented are still important in a nonlinear problem (especially those that
pertain to contributions due to spatial and temporal matching of load to response), and we
shall see in the next section that the practical solution of the time-dependence of the solution
depends upon a iteration scheme that involves the solution of a Jinear system of equations at
each step.

Temporal Integration Schemes

The equations of motion form an n-dimensional set, but there are 3n unknowns at each time
(displacements, velocities and accelerations). Some method of reducing the size of this

= problem must be employed in order to achieve a unique solution at the end of the time step.

';:_- Newmark's Method (Newmark, 1959) postulates simple polynomial relations among these

:::: coordinates:

s vn+l =vn + (1 - Y)anh + Yan+1h Eqn 3.5.a :
*4-’
o Un+1 = un + voh + (1/2 - B)anh2 + Ban+1h2 Eqn 3.5.b

.:;

A
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where the length of the time step is given by h = tn+1 - ta (note that h is a scalar), and a

subscript "n" represents the value of the corresponding quantity at ime ta (i.€., un = u(tn)).

These equations can be taken as a simple expression of polynomial relations among the
displacement u, velocity v, and acceleration a, or they can be derived by a weak formulation
of the temporal problem, with the "test” functions in the form of a two-parameter family

involving y and B. The details of this latter approach can be found in (Zienkiewicz, 1977,
Chapter 21), along with the generalization to families of numerical integration schemes that
involve three or more parameters.

This type of polynomial approximation has been used very successfully in a wide variety of
problems in structural dynamics. Newmark's original derivation for the two-parameter
numerical integration scheme based on these relations used the accelerations as the solution

of the equations of motion at time tn+1. The velocities and displacements can then be
obtained by substitution of the quantity an+1 into Eqn 3.5, Alternatively, the relations of

Eqn 3.5 can be recast so that the displacements at time tn+1 are the primary unknowns,

and the velocities and accelerations become derived quantities. Some of the details of the
development of these schemes will be presented later in this section.

In any numerical method, the primary issue that must be addressed is that of convergence.
A convergent method is one that guarantees that a refinement of the discretization will
produce generally more accurate results. In a time-stepping scheme, as the size of the time
step decreases, the answers converge to the correct solution. A second criterion is that of
accuracy, which is related to that of convergence. Where convergence addresses the
question "does the error go to zero as the time step decreases?", accuracy is concerned with
"at any particular time step, how accurate is the solution?", or perhaps "at what rate does

. the error go to zero with step size?". Obviously, a convergent method in which the error
goes to zero as the square of the step size (a quadratic convergence rate) will eventually
become more accurate than another scheme in which the error and step size decrease at the
same rate (a linear convergence rate).
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Another concern is that of stability — a stable method is one that guarantees that errors
introduced at one step cannot grow with successive steps. If a method is unstable, even
when the errors at each step are small, they can increase exponentially with time, thus
overwhelming the solution. In a stable method this cannot occur, although stability alone
does not tell us anything about the size of solution errors that may be introduced at each
step, or whether errors from different times can grow by accumulation. Many numerical
methods are only conditionally stable, in that stability is guaranteed only when the step size
is smaller than some threshold time scale dictated by the data of the problem and the
discretization (typically, this time scale is a factor of the shortest period of vibration for the
structure). Some idea of this critical time scale must be known a priori for a conditionally
stable method to behave in a robust manner. For this reason, the use of unconditionally
stable methods is often preferred — these methods are stable regardless of the step size
(although the actual size of the errors introduced at each step may still be large). Finally, it
should be noted that there are many related definitions of stability, and a precise definition
is a matter of opinion in the nonlinear case. The reader is referred to (Hughes, 1983) for an
exhaustive and yet very readable view of this topic. (Much of the detail underlying this
section can be found in this reference.)

The convergence and stability characteristics of a numerical method are not independent
(they are related by the Lax Equivalence Theorem, which is often termed "The Fundamental
Theorem of Numerical Analysis"), and so it is no surprise that we would want to restrict
ourselves first to methods that are both convergent and at least conditionally stable. In
addition, it should be clear that an unconditionally stable method, especially if it has a
higher order convergence rate, is to be desired. In the context of Newmark's Method, it
can be shown (Hughes, 1983) that the algorithm derived from the relations of Eqn. 3.5
will be:

(1) unconditionally stable when B2y 112
(2) linearly convergent when Y= 172
(2) quadratically convergent when  y = 1/2

An obvious (and widely used) choice for these parametersis B = 1/4 and y=1/2. Inthis

case, the time-stepping strategy has the particularly simple interpretation of applying the
trapezoidal rule to the integration of a = dv/dt, v = dx/dt:
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. v(tne1) = v(tn) + I ?fftﬂ') dr Eqn 3.6.a
o tn
o = v(tn) + (W2)[a(tne1) + a(tn)]
:':: J’ thel
g u(tn+1) = u(ta) + v(t+1) dt Eqn 3.6.b
o tl’l
= u(tn) + (W2)[v(tn+1) + v(tn)]
= u(tn) + hv(tn) + (h2/4)[a(tn+1) + a(tn)]
,.' ‘ This choice is often termed the trapezoidal method, or alternatively, the average-acceleration
"':-. method.
»
L) (A\
?.‘
(2 Newmark proposed a simple but effective iteration scheme for nonlinear problems. The

- equations of motion are solved for the acceleration at the end of the time step (recall Eqn

:j 3.2, evaluated at time tn+1), and then this new acceleration estimate can be used to find

B

y :- improved values of velocities and displacements.

a (i+Daps1 = M-1(fn+1 - K Dups1 - C (vpset) Eqn 3.7

q n"

“ :{

o where the superscript in parentheses preceding a quantity refers to the iteration number.

"") Note that the effects of damping have been reincorporated into these equations.

NS

[ To examine the convergence of this iteration for a particular time step, the iteration can be
>

Eb. written in the form:

5 (+Dans1 = F(Dans1) + b Eqn 3.8
Where the vector b contains all the terms that do not depend on the latest estimate of the
acceleration. The convergence of this iteration is related to the existence of attractive fixed
points for the transformation F. The particular form of the transformation matrix F can be

N :C-t" evaluated by substitution of the governing relations among displacement, velocity, and
'.C;r_ acceleration (given by Eqn 3.5) into the iteration defined by Eqn 3.7:
e
e
-
..ﬁ'\.
S
»
o
'.)‘.
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(i+Dapt+1 = M-1(p - K Dun+1 - C Dvp+1)
= M-1(p-K{un+vnh+(1/2-B)anh2} - C {vn + (1 - Y)anh}
- Bh2K (Map+1 - vhC an+1)

= -hM-1(BhK +YC) (Dan+1 + (terms independent of an+1)

= F(@an+1 + b

In this case the transformation operator F is the matrix defined by:

F = - h(M-1(BhK + YC) Eqn 3.9

A sufficient condition for the convergence of this iteration is that the solution an+1 behave
as a fixed point of the transformation F:

an+1 = Fan+1 +Db Eqgn 3.10

In the linear case Eqn 3.10 can be subtracted from Eqn 3.8 to obtain estimates of the error

(den+1 at the ith iteration:

(i+Den+1 = (i+Dan+1 - an+1
= F(dan+1 +b - (Fan+1 +D)
= F ((Dan+1 - an+1)

= (Den+1

(i+Den+1 = F Men+l Eqn 3.11

Eqn 3.11 implies that the convergence of the Newmark iteration defined by Eqn 3.7 is
guaranteed whenever the spectral radius of the transformation F is less than unity. The

following development shows that this will occur in the undamped case when the time step
is smaller than a multiple of the smallest characteristic period of the pencil (K, M). This

characteristic period is given by:
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I

o Tj = 2n/w;

o where the scalar ;2 is the largest eigenvalue of the pencil (K, M). This result is obtained
B
o by using the fact that the eigenvalues of M-1K are the same as those of the symmetric matrix

v

Eh
" A =L-1KL-T, where M has the Cholesky factorization M = LLT. In this case, we find that:
- P(E) = p(Bh2M-1K)

R = 1Bh2 | p(M-1K)

o

. =18 | h2 2
. =1B1(2m)2 (WTj)2 < 1 forconvergence

P \'

+ 0
(o Therefore, a sufficient condition for the Newmark iteration to converge is that the step size
o h should be taken smaller than the smallest period multiplied by the factor 1/(2x 31/2).

This result is not good news: the point of the trapezoidal version of the Newmark Method
‘ is that it gives an unconditionally stable algorithm, so that the length of a time step is not
/o dictated by stability conditions that restrict the step size to scales on the order of the shortest
vibrational period of the structure. Un brtunately, the convergence of the iteration used to

! ~. find the desired accelerations gives exactly these same conditions that we are trying to avoid
' by using an unconditionally stable method. There is hope that these conditions, though
o, sufficient, are not necessary, so that they may overly conservative in helping us choose a
._ step size. For a linear system, the calculations could conceivably be reordered so that no
:j iteration is necessary, but this sort of detail will not help in the nonlinear case, since
A
‘ iteration will be required whenever the mass, stiffness. or load depend upon the solution.
-

:f:j At this point it 1s instructive to recall that the highest frequencies of vibration for the
“ structure (which cause stability and convergence concerns) are usually not very accurate
5 estimates of the associated modes and frequencies of the actual physical system being

o modelled. Some thought might be given to the idea of "filtering out” these high-frequency
- effects, both because they cause stability or convergence trouble and also because they arise
':‘_-_ from inaccuracies introduced by the discretization. One way to perform this filtering would
" be to incorporate artificial damping into the damping matrix C. Unfortunately, this has the
o effect of filtering out the modes corresponding to the midrange of frequencies, and leaving
o
v
o
I,

5

‘
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the higher modes intact (see Hughes, 1983). Another way to perform this filtering is to

vary the parameters 8 and y in order to introduce some artificial dissipation of energy in the
higher modes. Again, this approach causes some difficulties, including the concern that the

high rate of convergence may be lost when y = 1/2. Still another method is to abandon the
Newmark algorithm altogether, and use another method, even at the expense of more
implementation difficulties (recall that there are families of methods with more available
parameters than the two given by the Newmark family).

There is another approach which should be mentioned. If the problem defined by Eqn 3.2
is projected onto a subspace associated with the lower modes of vibration (or some
approximation of this subspace), the resulting projected problem does not contain the high-
frequency behavior of the full (unreduced) equation that is causing these difficulties. Care
will have to be taken not to lose any information that may be particularly important in such a
case (e.g., resonance effects for midrange frequencies), but the general idea of filtering
high frequencies via some sort of a projection scheme appears to have promise.

An alternative formulation of the Newmark scheme can be derived that uses displacements
at the end of the time step as the primary unknowns, instead of accelerations.
Consideration of this form of the algorithm begins by rewriting the relations of Eqn 3.5 so
that velocity and acceleration at the end of the time step are expressed in terms of the
increment of displacement:

vn+l = (Y/Bh)(un+1 - un) + (1 -yB)va + (1 -y2PB)anh Eqn 3.12.a
an+1 = (1/Bh2)(un+1 - un) - (1/Bh)va + (1 - 1/2B)an Eqn 3.12.b

Now the equilibrium equations at the end of the time step (t = tn+1) can be written entirely
in terms of the displacement vector at this time:

Keff un+1 = feff Eqgn 3.13
where Keff = K + (y/8h) C + (1/fh2) M

feff = fn+1 + C[(y/Bh)un - (1-yB)va - (1 - ¥2B)anh]

+ M [(1/Bh2)un + (1/Bhvn - (1 - 1/2B)an
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After Eqn 3.13 is solved for on+1, the relations of Eqn 3.12 can be used to find estimates
for the velocity vn+1 and acceleration an+1. In general, these state variables (u, v, and a)
will not satisfy the equilibrium equations at the end of the time step, and so some form of
iteration can be constructed. In particular, this form of Newmark's method admits a
Newton-like iteration scheme, whenever a "tangent stiffness" K; can be evaluated. In the
following derivation, it will be assumed that the nonlinearities of the problem are expressed
so that only K and f depend on the displacement u. This implies that the mass and damping
matrices are not functions of the state variables, and that K and f do not depend on
velocities or acceleration (this situation includes both the consideration of small-deformation
plasticity and simple nonlinear boundary conditions). Relaxation of these conditions is not
difficult, but the nomenclature gets a little more complicated, so the general case will not be
treated here.

Define a residual vector r(u) by the relation:

r(u) = K(u)u +Cv +Ma - f(u) Egn 3.14
When consideration is made for the fact that v and a can be expressed as simple functions
of displacement u (recall Eqn 3.12), then Eqn 3.14 is seen to be a nonlinear set of n

equations in the n displacement components. The derivative of r with respect to u is given
by:

r'(u) = {(dK/Qu)u + K} + C(ov/du) + M(da/du) - of/du

{(dK/ou)u + K} + (y/Bh)C + (1/BhZ)M - of/ou Eqgn 3.15

or r'(u)

where the derivatives of velocity and acceleration with respect to displacement have been
obtained from the defining relations of Eqn 3.12. The term in braces is the tangent stiffness
matrix, which may either be exact (assuming the third-rank tensor dK/du can be evaluated)
or approximate, as is often the case in plasticity problems.

Since Eqn 3.14 defines a set of nonlinear equations, and Eqn 3.15 shows how to evaluate
the gradient of these equations, these two relations can be combined into an algorithm for
using Newton's method to solve the nonlinear equilibrium equations at the end of the time
step:

-

el
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Solve r'((-Du) [(Du - G-Du] = -r((-Du)  fori=1, 2, ... until converged
(The subscript "n+1" has been suppressed for clarity.)

As usual with Newton schemes, some starting vector must be obtained — for this purpose,
a rough estimate of the displacement (®)up+1 (such as the displacement at the end of the last
time step) is used in conjunction with Eqn 3.13 to obtain a prediction for (Dup+1. This
prediction is supplemented by the correction obtained by using Newton's method to find

(un+1 for iterations i = 2, 3, ... until convergence is obtained.

Algorithm 3.1: Newmark-Newton Temporal Integration

Finds: displacement, velocity, and acceleration at time tn+1

Given: an initial estimate of the displacement (©)un+1

(1) Initialization: evaluate K, f, C, and M using the estimate (©un+1
calculate ©)vn+1 and (0)ap+1 using Eqn 3.12
(2) Predictor:  use Eqn 3.13 to obtain the estimate (Dup+1

use Eqn 3.12 to obtain (vp+1 and (Dap+1

(3) Corrector:  For i=2,3, ..... until converged:
solve r'(G-Dun+1) [Dun+1 - G-Dup+1] = - r((-Dun+1)

calculate ()vn+1 and (an+1 using Eqn 3.12

The convergence of this iteration scheme can be examined using the same sort of fixed-
point analysis that was derived for the original Newmark scheme earlier in this section.

The iteration amounts to the transformation of (Dun+1 by a tranformation matrix F, whose
spectral radius must be less than one for the iteration to have an attractive fixed point. In
the following analysis, in order to call attention to the important result, it is assumed that
there is no damping and that the load f is independent of the displacement u (this allows the
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iteration to be phrased in terms of the natural frequencies of the discretized structure).

Finally, it is assumed that the time step h is sufficiently small so that (1/8h2)M dominates
the stiffness K in the effective stiffness matrix — this assumption admits an asymptotic
approximation for the inverse of r'(u).

Begin the analysis by writing the iteration in the usual transformation form:

(i+Dups1 = F(Dups1) + b Eqn 3.16

Where the vector b contains all the terms that do not depend on the latest estimate of the
displacement. Substitution of the governing relations among displacement, velocity, and
acceleration (given by Eqn 3.12) into the iteration defined by Eqn 3.16 yields:

(i+Dup+1 Mun+1 - [F'((Dup+ 1)) [1(Dup+1)]

= Gunsl - [Ke+ (1/BhMI [{K + (1/Bh2)M}Dune1 - ]

un+1 - [(Bh2M-1 + (Bh2)2M-2K¢ + ...] [{K+ (1/Bh2)M )} Dun+1 - f]

(un+1 - [(Bh2)M-1 (1/Bh2)M] (Dun+1 + [(Bh2)M-1K] Dun+1 + ...

(Dun+1 - Oups1 + [(Bh2)M-1K] Dups1 + ...

[(Bh2)M-1IK] Dups1 + ... Eqn 3.17

The ellipsis (...) indicates higher-order terms in (Dup+1, as well as terms that are

independent of this displacement vector.

Eqn 3.17 is a similar result to that derived earlier for the original Newmark iteration. As
before, a sufficient condition for the error to tend to zero as the iteration continues is that the

time step h satisfy the implicit condition:

IB1(2r)2 (WTj)2 < 1 forconvergence

This convergence condition for the Newmark-Newton iteration defined by Algorithm 3.1 to
converge is that the step size h should be taken smaller than the smallest period multiplied
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by the factor 1/2x B1/2). As we saw earlier, this is the same step-size limitation that is
being avoided by the use of unconditionally stable schemes (such as this one). Thus,
although the sophistication of Newton's Method is being employed for the iteration
scheme, the sufficient condition for the convergence of this iteration still involves the
highest frequencies of the structure. Clearly, the idea of a projection as a filter to remove
these troublesome high frequencies is worthy of closer attention.

Finally, anyone who has ever used a temporal integration scheme knows that the
subdivision of the time step usually gives better results, both in terms of accuracy (since the
error in replacing temporal derivatives with differencing schemes gets smaller with the time
step), and in terms of conditioning (with the numerical behavior of the matrix equation used
to integrate the solution improving as the time step is shortened). There is thus a good
reason for any temporal integration scheme to use a sub-incrementing procedure whenever
convergence to the correct solution at the end of the time step cannot be obtained. It is
worthwhile to examine this fact from the standpoint of the convergence of the Newmark-
Newton iteration given in Algorithm 3.1. In order to simplify the analysis, the matrix
pencil (K, M) used in Eqn 3.13 will be replaced by the equivalent problem (A, I), so that
the underlying matrix relation to be solved at each step is:

Aeffu = feff Eqn 3.18

where Aeff is the effective stiffness obtained by replacing M with I and setting C to zero in

the defining relations for Eqn 3.13. Then the matrix problem to be solved at each step takes
the form:

(A -ADu = feff with A =-(1/8h2)

This form allows the use of the Fredholm Alternative to examine the condition of Aeff.

Since A's eigenvalues (the frequencies wi2) are all positive, the parameter A cannot be an
eigenvalue of A. Application of the Fredholm Alternative Theorem implies that the solution

of Eqn 3.18 will have components in the direction of the ith eigenvector of A whose

magnitude varies inversely with (wi2 + 1/8h2). Thus, the condition of Aeff looks like:

P(Aeff) = (on2 + 1/Bh2)/(m12 + 1/8h2)
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:“' This can be compared to the static case (M = 0), where the condition of A is given by:

iy
) P(A) = wn2/wn2
N
)

.* .. . .
NN Obviously, as h decreases, the condition of the matrix problem for the solution at the end
' .. . .
Bt of the time step improves (the condition number goes to unity). This results confirms the
. _ well-known qualitative principle that a dynamic problem involving a nonlinear stiffness
-:;:Z matrix K will be "better-behaved” than a nonlinear static problem involving the same

‘::‘;: matrix. This also gives a good reason to consider sub-stepping in the time domain

(o whenever the nonlinear iteration for the solution at the end of the time step will not
i converge.

e
o
o
o : :

- R rdin lgorith
C»
_ : The basic principles of the proposed reduced coordinate algorithm have been developed in

- various sections of this document, and they now can be assembled here. The most
- important components of the method are:

\ Z:j:.'- (1) Generation of an appropriate manifold for the projection solution of the set of Finite

,_-‘;-\_j Element equations using the Krylov Subspace given by the Lanczos Algorithm in an

e inverse setting. The initial vector for the Lanczos Algorithm may include the spatial

variation of the forcing function. If resonance is expected, a shift may be used to
W N
! generate Lanczos vectors that are the most likely to be excited by the time-dependent
::. - forcing function. Either the Lanczos vectors themselves (spanning the Krylov
. ' . -
*'.‘.::' Subspace) or a number of converged eigenvectors from the Lanczos Algorithm may
o be used. The former case will give basis vectors that will be termed "Lanczos
N : . " : "
o vectors” and the latter will yield "Lanczos eigenvectors".

.M (2) Use of an appropriate temporal integration scheme for the integration of the reduced
3 equations of motion. "Appropriate” in this sense means that the primary unknowns
VL . . . . .. . .

Ny of the time-stepping scheme (which will be forced to lie in the approximation

¥ . .

A subspace) may need to be chosen so as to match the physical interpretation of the
.. . . . - . .
h vectors used to construct the approximation manifold. If the solution exhibits
‘ - enough differentiability, the notion of "appropriate” in this sense may be relaxed

o somewhat.
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(3) Incorporation of a "sub-stepping" scheme into the temporal integration scheme to
enhance the robustness of the algorithm. If this sub-stepping does not yield the
desired convergence of the equilibrium equations at the end of the time step, then
the algorithm should either halt, or attempt to generate a new approximation
manifold using the last accepted values of the state variables u, v, and a.

The purpose of this section is to use these principles to construct a relatively coherent form
of the proposed algorithm.

The matrix equation to be solved is the dynamic equilibrium relation of Eqn 3.2:

Mi + Ku=f

where K and f can be functions of the displacement vector u. In general, this relation could
include a damping matrix C and dependence of all the terms on the displacement and its
derivatives. (These extensions are easily made, but because they are not required at the
present stage of the research, they will not be considered here.) This equation can be
projected onto an approximating subspace spanned by the orthonormal (with respect to the
mass-weighted inner product) columns of Q to obtain the reduced set:

y+Ry=¢g Eqn 3.18

This matrix equation can now be integrated over time to give the desired solution u = Qy. It
should be emphasized that this temporal integration is equivalent to the solution of the
nonlinear equilibrium equations at the time step t = tn, using the solution at the last time step
as initial conditions. Since these equations are generally nonlinear, some type of iteration
scheme will be used, such as the original Newmark Method, or the Newton scheme of
Algorithm 3.1. If the iteration converges, then the next time step is considered. If the
iteration for the solution at time tn does not converge, there are a few actions that can be
taken:

(1) Subdivide the time step to get a more well-conditioned problem. This gives a
temporal integration scheme with sub-stepping, and as long as the time step is
broken into some integral number of substeps, the solution will eventually be

obtained at time tn (assuming that the iteration converges for each subincrement).
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(2) Recalulate a new projection basis. If the effect of the nonlinearities is to alter the
matching in space or time between the forcing terms and the approximation
manifold, a new manifold will have to be constructed. An example of this would
occur when some elements of the Finite Element mesh undergo large plastic
deformations, so that the original approximation space is no longer a good estimate
of the shape of the deformed structure. In this case, care must be taken to make the
solution continuous as the manifold is modified, so that the "jump"” from one
solution manifold to another does not introduce a discontinuous solution in timne.
One way to achieve this continuity is to consider the projection solution of the
problem

M(ii - o) + K(u-uo) = f

where up is the last approximate solution calculated before the manifold was
recalculated. If this approach is used to define a new incremental displacement

Vector z =u - uo, then the projection solution z(t) will be a continuous function of

time.

(3) If neither of these schemes gives a convergent iteration for the solution, then the
algorithm will have to be halted. This is always a consideration that must be dealt
with in a nonlinear solution method, and alternatives to "giving up” when choices
(1) and (2) do not give satisfactory results are being considered by the authors.

Implicit in the preceding discussion is the choice of the approximation subspace —
depending upon this choice, one of many related algorithms can be constructed. The
approach used in this research is to generate the approximation manifold using the Lanczos
Algorithm in an inverse setting. This inverse approach is motivated by the spectral
representations for the solution given by the Fredholm Alternative, which showed that the
minimal end of the spectrum is the most important for approximation purposes.
Unfortunately, the generation of Lanczos vectors in an inverse setting involves solving the
large system of equations that we are trying to avoid by using a reduced coordinate scheme.
Because these vectors are so expensive to generate, it is desirable to reuse this
approximation space over many time steps, so that the cost of finding the Lanczos vectors

can be amortized over these many steps.




Ch apler 3- D:chnmcm Q[ mc Bgms:d ﬂlﬁQﬂlbm 22

s
:S These considerations allow the statement of a relatively concrete version of the proposed
" reduced coordinate algorithm. Some of the details of this algorithm will be discussed in the
~ next section, and relatives of this algorithm obtained by modifications of some of the basic
}_Z principles discussed above will be given in the final section of this chapter.
-\.:
- lgon 3.2 in
- Finds: displacement history for the problem Mii + Ku = f
Given: initial conditions on displacement and velocity, error tolerance ¢, length
:‘_: of time for analysis tmax, time steps h, maximum number of temporal
b iterations ITMAX
(1) Initialization: evaluate initial modes of problem and arrange them as the
<.
o columns of Q
p (2) Fort =1 t0 tmax
- (2a) Fori = 1 to ITMAX
. solve Oy + R (ly = g for estimate of reduced solution y(tn)
: evaluate residual r=()y + R@y - g
~ if Il Il <€, then
iteration has converged
. accept estimate yn for solution at ime t = ta
2 break to next time step
.
% else if i <ITMAX
- else
b iteration | v {in [TMAX
A
v if time step has not been subincremented then
subincrement time step h and continue from (2)
N else if projection basis Q has not been updated
K. calculate new basis Q and continue from (2a)
o else
X terminate algorithm due to lack of convergence
.
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: mputation nsideration
o The algorithm of the last section is still somewhat nebulous, so this section is devoted to
{:" clarifying some important basic ideas. The most important questions include "how
,I" . . . - - 3 . -

N expensive is this algorithm?", "what should the dimension of the approximating subspace
W be?", and "what can go wrong with this scheme?". These questions will be addressed in
A that order.

E:l The most expensive part of almost any Finite-Element analysis is the formation and
o solution of the governing matrix equation. The cost of forming the element matrices can be
£2 very difficult to quantify, but in many nonlinear problems it may be the most expensive
3; step. For an unreduced problem, the cost of performing one iteration of a time-stepping
:::'. scheme can be decomposed into the cost of forming the matrix equation from element
N contributions and of solving the resultant set. The element cost can be represented by:
o NELEM*FORMCOST

-,

2 . . .

~ where NELEM is the number of elements and FORMCOST is an estimate for the average
= cost of forming an element matrix. The cost of solution of the system of equations
7. increases like:
’_‘ NEQ*NBAND?2
where NEQ is the number of equations and NBAND is the bandwidth (in some average
- sense, if a "profile" solver is used). There may be other costs associated with a Finite-
:’_‘Z Element analysis, but these two types are typically the largest fraction of the computational
::.': expense. In this case the total cost of the solution can be estimated by:

o
COST = o*NELEM*FORMCOST + B*NEQ*NBAND2 Eqn 3.19

for some scalars o and .

S In a reduced coordinate algorithm, the system of equations can be formed by performing

-t the reduction (pre- and post-multiplication by Q or QT) at the global or at the element level.
L

- Usually, this calculation would be done at the element level to save storage space, so the
',“, formaton of the equations would involve computational effort that grows like:
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NELEM*FORMCOST + y*NMOD?2

where NMOD is the number of modes in the reduced formulation. The parameter y
depends on the size of the element matrices, and this size helps to determine whether the
formation of the element arrays or their transformation into reduced form constitutes the
larger cost. Once the reduced arrays are found, the solution costs for the reduced model at
each iteration step grow like:

NMOD3

So the total cost of the reduced model for one iteration can be estimated to be:

a*NELEM*FORMCOST + SNMOD2 + ¢*NMQOD3 Eqn 3.20

Although it is difficult to compare Eqns 3.19 and 3.20 since the coefficients of each term
are unknown, there are a few conclusions that can be drawn:

(1) The cost of forming the element matrices represents a computational overhead that
must be performed for either method. If this cost constitutes the major fraction of
the effort required, then the two algorithms will be competitive.

(2) The cost of solving the system of equations is very different for the two methods.
Whenever the bandwidth and the number of equations grow simultaneously (i.e. in
all but one-dimensional problems), the cost of solving the reduced equations has
the potential to be much cheaper that that associated with an unreduced problem.
In particular, for large two-dimensional and almost all three-dimensional problems,
unless an inordinately large number of modes are required for the solution, the
reduced algorithm will be cheaper to implement at each iteration. -

The next important question to be addressed involves the size of the approximating
subspace required for good accuracy. This question is very difficult to answer in general
terms, because a small residual error in the reduced problem may correspond to a large
error in the actual unreduced problem. In turn, this error in the large discretized model may
represent an even larger mistake in the setting of the underlying continuous problem.
Knowing how many modes to include in a solution is a little like knowing (a priori) how
many elements will be sufficient to gain a given accuracy in an arbitrary Finite-Element

.........

Pt i N AN A AL R A A e LAY I A A




" ey S - - ‘—vvv-vv-_—vww

vel h i Page 3.25
Pl
-
:.E discretization. Because the problem is satisfied only in a projected sense, it is not clear
At : what the actual (unprojected) error is. Nonetheless, there are a few suggestions that can be
o~ made:
-
_\ (1) If the forcing function can be represented by a spatial term f (such as in an
v ' earthquake problem, where this vector is the product of the mass matrix and a
.‘ .: vector of influence coefficients) the norm of the projection error (I - QQT)f can be
' t'ﬁ monitored. Once this error decreases to some preset tolerance (e.g. 5%), it is clear
-1"‘k that enough modes have been found so as to model the spatial variation in the
- loading function. (Recall that (I - QQT)f the component of f that is orthogonal to
? \:- the columns of Q in the "usual” inner-product for Rn.) It should be noted that this
._"‘:; approach is related to monitoring the modal participation factors for the particular
oy problem.
®
" :: (2) Regardless of the number of modes chosen, it is probably a good idea to rerun the
n_-:’ reduced analysis with more modes, in order to compare the original simulation to
N this "refined solution”. If no major changes are found in the results, there is some
i hope that the reduced solution exhibits the most important mechanical behavior of
»-:::5:' the model problem. When the reduced method is used for the purposes of an
i?_: inexpensive preliminary design, an unreduced solution can also be used for
o < comparison purposes.
J
y :E'.j (3) If the problem being solved is linear, then the reduced stiffness can be diagonalized
'j once, and then the cost of performing each step of the algorithm is negligible, since
';'..:Z the matrices need not be reformed at each step, and no equations need to be solved.
' ;3 In this case, it is inexpensive to add modes, and so refined analyses with more
:-_:::': vectors in the projection basis are a practical approach to checking for convergence.
E Finally, the question of what can go wrong with the scheme should be addressed. As will
R be seen in the next chapter, if the physical interpretation of the projection space is
N inconsistent with the physical interpretation of the unknowns sought in the temporal
'?. integration scheme, poor results can be obtained even when the (projected) residual norm is
‘:: :!‘; small. In addition, if many modes are considered in a large problem, the formation of the
Al reduced matrices may involve appreciable computational error. For this reason, it is

recommended that the evaluation and solution of the reduced problem be carried out in




a1,

g
S
v

e

u('l
LY
AL,

.......

h . Development of the Pr Igorith Page 3.26

higher-precision arithmetic, if possible. For instance, if the element stiffness matrices are
evaluated as 32-bit reals, then it is appropriate to store and manipulate the reduced matrices

QTAQ, QT™Q, and QTf as 64-bit floating-point numbers. Element assembly for an
unreduced formulation merely involves summing the element terms into the global arrays,
but for a reduced formulation, it involves the formation of many matrix inner product
multiplications. It is well known that accumulation of inner products in double precision is
an inexpensive means for reducing the propagation of round-off error, and it is clear that as
long as the reduced matrices are relatively small, the cost of solving these equations in
double-precision arithmetic is not a serious computational burden.

Comparison with Related Algorithms

The use of modal methods in linear dynamics has a rich history, including the standard
analysis technique known as "normal mode analysis”. The use of Lanczos vectors and the
application of modal methods to nonlinear problems is a more recent development, but
there are still dozens of recent references in this field. This section will therefore be
confined to the consideration of only several related publications, divided into three general
topics:

(1) "classical" mode-superposition for nonlinear problems

(2) Lanczos and related schemes for linear problems

(3) Lanczos and related schemes for nonlinear problems

What might be termed "classical” mode-superposition techniques involve the use of
eigenvectors of the linearized problem for generating approximate solutions for the
nonlinear model. This approach is taken by several authors, including (Nickell, 1975),
(Bathe and Gracewski, 1981), (Geschwinder, 1981), and others. A more recent work
(Idelsohn and Cardona, 1985) considers the use of eigenvectors combined with "modal
derivatives", and includes some emphasis on updating the modes during the calculations.

The use of Lanczos vectors in an inverse (non-shifted) setting has been explored for linear
problems by (Wilson, et.al., 1982) and (Nour-Omid and Clough, 1984) for general linear
problems. Wilson's reference includes an ingenious rediscovery of the Lanczos Algorithm
from a physical standpoint of what might be termed "neglected inertial forces”. Trying to

account for these neglected forces leads naturally to the Krylov Sequence and to an
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algorithm that is roughly equivalent to the Lanczos Algorithm with complete
reorthogonalization. Nour-Omid and Clough present similar results in the framework of
the Lanczos Algorithm, and use the more efficient three-term recurrence to generate a basis
for the projection space. Several papers involving this approach to different problems
(Bayo and Wilson, 1984a), (Bayo and Wilson, 1984b) and (Wilson and Bayo, 1986) have
also appeared in the literature. Since all these problems are linear, the reduced equations of
motion can be diagonalized once, and then many of the computational considerations of the
last section do not apply. In particular, the problem of consistency between the projection
basis and the Newmark unknowns does not appear to be a concern when the equations are
expressed in a diagonal form.

The use of Lanczos and related methods on nonlinear problems is a more difficult topic.
Applicaton of the Krylov Sequence to solve a linear problem (one resulting from one step
of a nonlinear iteration scheme, for instance) can be shown (Golub, 1985) to lead to the
well-known Conjugate Gradient Method for the iterative solution of positive-definite linear
systems. Alternatively, these calculations can be rearranged so that the projection solution
involving the Krylov Sequence yields the Lanczos Algorithm in a direct (i.e. non-inverse)
setting. This approach is taken by (Nour-Omid, Parlett, and Taylor, 1983) to develop a
Newton-Lanczos procedure for the solution of nonlinear problems. Newton's Method is
used to linearize the nonlinear model, and the resulting system of linear equations is solved
via a Lanczos Method. This approach is obviously related to the proposed algorithm,
differing in that the projection basis is constantly updated, and in the fact that the Lanczos
Algorithm is used in a non-inverse setting. Applying the Lanczos algorithm in this fashion
allows the projection space to be recalculated at each step (so that the projection space is
always associated with the current pencil (K(t), M(t)), instead of the pencil associated with
some earlier time step), but leads to two disadvantages. First, the projection basis is
associated with the largest eigenvalues, which are the least important in the approximation
of the solution (recall the Fredholm Alternative Theorem). In simple terms, this approach
converges from the "wrong" end of the spectrum, which might be expected to cause
difficulties if the coefficient matrix is ill-conditioned. Second, the Krylov Subspace is
invariant with respect to a shift, so this approach cannot simply incorporate a frequency
shift for the identification of resonance modes in the approximate solution. Nonetheless,
the algorithm presented appears to be efficient and reliable, and performs well on a variety
of problems, including a interesting nonlinear problem with a singular stiffness matrix. In

L)

addition, this approach can be applied to indefinite systems, so it appears to show much
promise for the practical solution of many important nonlinear problems.

e

o
)
.'--.
s
i




m'mmmmwwwwv-vvt hadh Bk Aadh it
“~

™

:"

apter 4

le Problems and RKesy.is

£

- ll ll

Wt

3y




hapeer 4; Ex le Problem Resul Page 4.1

Chapter 4: Example Problems and Results

Introduction

The reduced coordinate algorithm developed in the last chapter was motivated by
considerations of accuracy, computational efficiency, and minimization of storage. In
theory, it appears that the proposed method would be useful for solving many large
problems, but the true test of any algorithm is found in how well it actually solves practical
engineering problems. The verification of any algorithm must therefore eventually include
the solution of "real-world" problems.

The purpose of this chapter is to consider the solution of two representative problems in
dynamics, using both an "unreduced” formulation (direct step-by-step integration of the full
equations of motion) and the proposed reduced coordinate algorithm. These two problems
are relatively simple ones, so that the behavior of the solution can be evaluated easily and
the algorithms compared without unnecessary confusion. Although the problems are not as
complex as many in mechanics, they are not contrived. In fact, this simplicity will be seen
to be a serious handicap for the reduced method, so that good performance on these simple
problems can be taken as evidence of even better results on larger, more intractable models.

The problems considered in this chapter involve free vibration of elastic solids subjected to
initial disturbances. The first problem is that of a linear beam whose free vibrations are
constrained by a nonlinear support. This beam problem is essentially one-dimensional. so
that the solution history for the entire beam can be displayed in one three-dimensional plot
involving space, time, and displacement. This characteristic makes it easy to compare the
methods used. The second problem involves the free vibration of a relatively stff building
that is founded in a softer soil deposit, and subjected to a blast loading. This model is
much more typical of most problems in engineering mechanics, as it involves larger
systems of equations, larger bandwidths, and dissimilar materials. The effect of the type
of integration scheme used is the most important aspect of this problem, and since the
geometry is two-dimensional, th.: solution history is much harder to visualize.

Extensions of the reduced coordinate algorithm to more difficult problems including
material nonlinearities and dissipative (as opposed to dynamic) time-dependence can be
found in (Mish, 1987). Extensions of this method to include multiple phases (soil-fluid-
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structure problems) and alternative projection bases are discussed in Chapter 5 of this
document.

Beam with Nonlinear Support

The first problem considered involves the free vibration of the beam shown in Figure 4.1.
This uniform beam is initially displaced into the shape given by the first mode of vibration,
and released at time t = 0. After one quarter of the beam's fundamental period has elapsed,
the free end of the beam comes in contact with the support, and the displacement field
becomes a much more complicated function of time. Four different solutions are
considered:

(1) Direct integration of the unreduced problem with a discretization involving 10
beam elements and a time step of 0.01 second.

(2) Direct integration of the unreduced problem with 20 elements and a time step of
0.005 seconds.

(3) Reduced algorithm using three Lanczos vectors and the same data of solution (1)

(4) Reduced algorithm using three Lanczos eigenvectors and the data of (1)

Beam Properties: Nonlinear Support:
[=1 wbl)20

1
1

v r—m

Figure 4.1: Beam Geometry and Properties

The transverse displacement of the tip of the beam is shown in Figure 4.2. Note that all the

methods used show exact agreement until the barrier 1s hit by the tip of the beam, and

..............
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relatively similar results afterwards. In this problem, a Newmark scheme involving
incremental accelerations was used in conjunction with a projection basis with the physical
interpretation of beam displacements. This choice was made to realize the simple iteration
scheme of the acceleration form of Newmark's method, while maintaining the interpretation
of the Lanczos vectors as generalized displacement coordinates. In general, this choice
might be expected to lead to some numerical difficulties (as will be seen in the next example
in this chapter), since it amounts to forcing the incremental accelerations at each step to
have the shape of the estimates for the lowest eigenvectors of the displacement-based
problem. However, this beam problem has so much required continuity (continuity of
displacement and its first derivative) that this inconsistency is not a problem, and the
reduced solution is well-behaved. This can be taken as a demonstration of the fact that
some "well-behaved” problems do not require the sort of considerations of consistency
(between primary unknowns in the temporal integration and primary unknowns in the
generation of projection vectors) that were discussed in the last chapter.

Direct Integration, Refined Mesh

Direct Integration
3 Lanczos Vectors
‘ 3 Eigenvectors

Tip
Displacement

Inmitial

Conditions Free Beam

Perioxd

Figure 4.2: Tip Displacement History




Figures 4.3 through 4.6 show the behavior of the four solution histories. Note that the
reduced solutions show a little less high-frequency behavior (since the higher frequencies
have been filtered by the projection scheme), and thus more closely approximate the
“smoother” solution obtained by subdividing the spatial and temporal discretizations.

In general, the reduced coordinate algorithm required about twice as much computational
work as the unreduced formulation for this problem. While that may seem like poor
performance, it is actually very efficient, given the analysis of the last chapter. This
problem is one-dimensional, and so the bandwidth is very small (half-bandwidth = 4) and
does not grow as the mesh is refined. Thus, in a one-dimensional problem like this one,
the cost of solving the unreduced system of equations grows linearly with the number of
nodes. The reduced algorithm cannot compete in this setting, since it is designed to be
efficient for problems where the bandwidths are large and grow larger as the mesh is
refined. (The next problem is a better example of this sort of growth.)

bigure 4.3 Results of Retined Unreduced Solution (20 Elements)
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Figure 4.4: Results of Unreduced Solution (10 Elements
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Figure 4.6: Results for Lanczos Eigenvector Reduction (10 Element
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o Blast Load on Soil-Structure System

: A The second problem considered involves the dynamic response of a building founded in
(A

relatively soft soil. The building is loaded by a blast pressure of 2 psi for a duration of ten
seconds. In the first five seconds, the blast load is uniform, and in the second five the load
" decreases linearly from 2 psi back to zero. This problem is the first step in a more complex
analysis in (Mish, 1987) involving the use of bounding surface plasticity for the modelling
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of the nonlinear behavior of the soil. For the problem considered herein, both the soil and

) the building are taken to be linear elastic, with material properties given by:
o |

"‘.: Esoil = 300 ksi Vil = 0.2 psoil = 0.125 ksf

' Ebldg = 7500 ksi Vbldg =0.18 pbldg = 0 150 ksf
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The geometry of the problem is shown in Figure 4.7, and the appropriate boundary
conditions are illustrated in Figure 4.8 (this figure also shows the location of two particular
elements that are used to monitor the behavior of all the analyses).

? y —p j&- 20ft Building (E = 7500 ksi)
3 Soil (E=300ksi)
100 ft
14-—---- 240 ft ‘
160 Nodes
90 fL 128 Elements
<% 500 ft P » x

Figure 4.7: Blast Problem Geometry and Materials

Blast Load of 2 psi —» Element 34 - Foundation
10 second duration _r
—
_; Element 66 - Bottom of Building

) | H

u = v = 0 along this boundary

Figure 4.8: Boun nditions for Blast Problem

(1) The direct solution of the full equations of motion using an unreduced

formulation. In this case, incremental accelerations are the primary unknown in

the Newmark iteration.
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(2) A reduced formulation using Lanczos vectors from the displacement form of the
problem for a projection space, applying the incremental acceleration form of
Newmark's Method (as in the beam problem considered earlier).

(3) A reduced formulation using the same Lanczos vectors as in analysis (2), except
using a Newmark-Newton iteration involving incremental displacements as the
primary unknowns.

In cases (2) and (3), anywhere from one to six Lanczos vectors were used, and all of these
vectors were generated using the initial acceleration as a starting vector. This choice
corresponds to choosing the initial mode to correspond to the pseudo-static response to the
intial applied force. Results will be reported in the following interpretation for from one to
three vectors. Adding vectors beyond a three-dimensional subspace did not appreciably
increase the accuracy of the analysis, but began to increase the computational effort. In this
problem, the reduced algorithm typically used about half as much computer time as did the
unreduced problem (which is not surprising since the size of the equation set and the
associated bandwidth are much larger than in the beam example). In addition, most of the
computer effort for the reduced solution involved the computational overhead of formation
of stiffness matrices, which were evaluated at each step for this linear problem in order to
model more accurately the performance of these schemes in a nonlinear setting. The
existence of this computational overhead manifested itself in the fact that the increase in size
of the reduced problem from one to three vectors produced only a marginal change in the
computational effort required for the analysis. Given the operations counts considered in
the last chapter, it appears for two- and three-dimensional problems, the reduced algonthm
will be very inexpensive compared to unreduced solution techniques. It should be noted
that this problem is only a coarse mesh for a relatively small two-dimensional problem. It
is expected that this reduced algorithm will soon be used by the authors on problems that
are orders of magnitude larger than this one. Finally, another expense for the reduced
method is that the code used to do the reduced problem is heavily instrumented for
purposes of evaluation ot the algorithm. (For instance, the reduced program does most of
the work of the unreduced one in order to keep "two set of books" for comparisons of the
methods while the proposed algorithm is being modified and optimized.) The program
used to solve the unreduced problem is much closer to a "production code” than the one

used for the reduced algonthm.

The shapes of the displacement fields for the first three Lanczos vectors « “modes ') are

shown n Figure 4.9, These patterns of displacement are magnified a few thousand times
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~ because the normalization of these modes with respect to the mass matrix yields actual
s displacement components that are on the order of thousandths of a foot. As may be noticed
-_:_ in Figure 4.9, the shape of the displaced building in the first mode appears to corresponds
:;::I to a rigid rotation of the building under the applied load, and the next two modes
EAs
._:'. demonstrate some bending behavior of the building.
=
Y
- (a) Mode 1
N Blast Loading
N Magnification : 5000x
] . ‘
o
¥
*
o
. 5
N (b) Mode 2
e Blast Loading
B Magnification : 5000x
. 0 U N
o )
:::'
J
o
o (c) Mode 3
o Blast Loading
- Magnification : 5000x
N
.-\-::
\.l
N
-.._ Figure 4.9: Modes for the Blast Problem
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In order to more clearly see the stress state comresponding 1o these modes. the normal and

shear stresses for the first three modes are shown in Figures 4.10 - 412 Figure 411

ciearly shows the distribution of bending stress in the butlding, with the tirst made

N .
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corresponding to the building acting as a cantilever, and the second and third modes
showing bending stresses more characteristic of a simply-supported beam. The shear
stresses shown in Figure 4.12 also demonstrate this result.

(a) : Mode 1 Stress (psf)
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(b) Mode 2 Stress (psf)
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Figure 4.10: Modal Stresses oy for the Blast Problem
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shows a pronounced "drift" with time. This drift gets worse as modes are added, so the
results for a larger set of Lanczos vectors are not shown. What is happening here is that
the incremental accelerations at a given step are not particularly similar to the displacement
projection basis, and so the projection solution obtained (while satisfying the equilibrium '
equations in a projected sense) is not very accurate in the setting of the larger problem. In
the beam problem, the more stringent continuity requirements of the model blurred the
distinction between the approximate subspace for the solution and the type of unknown
solved for in the temporal integration scheme. In this problem, the obvious interpretation is
that the temporal integration scheme must use a solution that is consistent with the
approximate solution space.

Results involving stress histories in the elements highlighted in Figure 4.8 are shown in
Figures 14-18 (element 34, in the soil layer), and in Figures 19-23 (element 66, at the
bottom of the building). Note that Figure 15 (the history for the reduced method using a
standard Newmark iteration) shows the same pronounced drift in the oscillatory stress
states. Figure 19 shows that, for the bottom of the building, the entire solution has been
drowned out by this drift. In this case, forcing the acceleration to take the shape of the
displacement modes guarantees huge displacements and stresses for the solution history.
This clearly shows that care must be taken to use modal projection methods with
appropriate time-stepping schemes, especially in nonlinear settings where the reduced
problem cannot be diagonalized.

In conclusion, it should be reiterated that the reduced coordinate scheme has produced
accurate answers on these example problems, and that it can be implemented relatively
easily in many Finite Element codes. The algorithm appears to show a great deal of
promise for the solution of large problems, especially since it is competitive with standard
methods on smaller problems (such as these two) where an unreduced formulation has a
computational advantage.
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4.3Q~ === Unreduced Formulation
(Incremental Acceleration)

—
b
o o == (One Lanczos Vector
- 3
2 = (Incremental Acceleration)
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) = €0 N
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. O i
.’Q.{.’ = Time
- :_)0 (seconds)
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(In both cases, the results from the reduced formulaton
with incremental displacements as primary unknowns
PR o are coincident with the unreduced results shown)

Time
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=== (One Lanczos Vector
(Incremental Accelerat

Horizontal Displacement (ft)
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Fieure 4. 13 Representative Honzontal Dispiacements
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) Conclusions
b
N2 The proposed research has been concerned with the reduction of large mechanical problems
“'\ to a more manageable size. The results of the last chapter show that the reduced coordinate
...;\ algorithm suggested in this document can be used to achieve this reduction. while
N preserving the important mechanical behavior of the original model. Through the use ot
"-i this method, many large models can be solved on smaller machines, and presentls
:;::_, intractable problems can be solved approximately on larger computers. The proposed
b,_ reduced coordinate algorithm represents an attractive alternative formulation to direct
"o methods for solving many important problems in mechanics
o
;_: Suggestions for Further Research
The denvatons and results presented in this document represent an attempt to develop and
-l: apply this proposed algorithm to some large problems in mechanics. but these results are
_" only a first step towards a more general method that can be used on a wide vanety of
- problems. In this section. some suggestions for future work will be outlined and
- discussed.
'.;ZT;
;.::: (1) Reduced coordinate analvsis of problems involving soil-fluid-structure interactions.
-
- The onginal goal of this ongoing research was to model large problems that were
’_:.:'-‘_:' intractable using a direct (1.e. non-reduced) approach. An excellent example of this tvpe ot
o problem involves the vibration of a structure that rests upon a saturated soil. The dynamic
o behavior of this system involves the solid mechanics problem of a soil-structure system.
_:_ but this behavior is tightly coupled to the flow problem ot water in the pores of the sml. It
jf',':'_f the soil permeability 15 small. then some simphifying assumpuons about the relatve
j displacement of the soil and fluid may be mude, but the low permeability and high bulk
" modulus tor the soil-water system render the system nearly incompressible, which results
R ina ditficult numernical problem.  Conversely, 1t the soil 1s very permeable, the
incompressibilty is less of a concern, but the relative displacement of the solid and tluid
,E::f;- complicate the kinematics of the problem. In erther case, an accurate analysiy can he
R computationally very expensive.
7
. -\.E The modal algorithm can be used to reduce the size of this type of problem to a more
.
\
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S
manageable level  Itis proposed to use the reduced algorithm on several large sonl tluid
structure problems to determine whether it pertorms well in this setting, and to tind out
g what tvpe of reduced coordinates work best  This research will require considerable hasi
work to be able to madel the physics of the problem. as well as recasuing the resulting
j.-. direct analvsis into an appropnate reduced torm. Previous research into the nonhinear
- material behavior of sotls with low permeabilty, as well as similar ongoing research tor
- granular souls, will be used 1o model the response of the soil, and this response will be the
':-_‘ primary source of nonhineanties in these problems
21 Generahizanon to different types of modes.
The research to date has been developed theoretically from the standpoint that an orthogonal
' set ot modes 1s available for projection of the large problem onto a smaller solution
- subspace  In the research completed to date. these modes have included exact eigenvectors
E‘_'.' and Lanczos vectors tor some particular state of the matrix equation of motion It 15
‘;:1 proposed to consider what other modes might be used for a solution, and whether ditferent
' parts of 4 coupled problem might require a "mixang” of types of modes. [t mav also be
helptul to include modes that represent generalized denvatives of the eigenvectors or
Lanczos vectors. Some research has been done along these lines (ldelsohn and Cardona,
\ T9%5)using exact egenvectors and denivatives. [t may be worthwhile to develop andt
extend this line of research to the case of Lanczos vectors,
= 3 Implementanon of Adapuve Strategy
S a
The single higgest obstacle to the use of almost any nonlinear algonthm s that the analvat s
otten presented with a bewildening vanety of error tolerances, step sizes. and soiution
::j: parameters that must be chosen betore the analvsis can begin . One of the most important
2 properues ot a usctul algorithm s that 1t ansulates the analyst from as many ot these
; Jedisions as possibie Foranstance. many integration schemes can be structured ~o that the
; alzonthm rand not the aser, deternunes the size of an appropnate integration step. adarting
::',' the step wize to the data and solution of the probiem without any intervenuon on the part of
’ the analyst . The proposed reduced coordinate algonthm requires more parameters than a
-r: direct unreduced tormulation, simply because 1t needs exactly the same data as the direct
(N scheme. ind also requires decisions as ro the number of modes 1o he used and  the error
A
Na
o
l...
]
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tolerances for the algenthms to generate these modes tamong other things). One of the
most pressing requirements for the etficient implementation of this proposed method is that
the algonthm be capable of finding reasonable values tor these solutton parameters. and ot

adapuvely varving these quantties in response to the results obtained.

All three ot these topics are presently being studied, and the algonthm s being moditied in
response to developments in these and other areas. The results of these tests and

evaluations wili be reported 1n appropnate journals.
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